
An Introduction to Python
for Text Analysis

Marco Sammon
Kellogg School of Management

1/12/2017

Outline

1. Running Python programs in PyCharm
2. Python data types and syntax
3. Text analysis in Python
4. Automated downloading of SEC filings
5. Extracting counts of text characteristics
6. Discussion of Financial Health Economics by Koijen et. al. (2016)

Running Python Programs in
PyCharm
Sampleprogram1.py
Sampleprogram2.py

Running Programs

• Once your interpreter is set up, you are ready to run programs

Select program Run Debug Stop

Switching Programs

• In PyCharm, switching tabs in the editor does not switch the active
program

• There are two ways to switch the active program
1. Right click in the editor on the program of interest, and select Run
2. Use the box in the top right of the PyCharm window to select a different

program

Notes on Python 3.X Data Types
and Syntax
ifelse.py
Tryexceptcode.py
Datastrctures.py
Callfunction.py

Python Variables and Lists

• Variables
• Put quotes around strings

• Both “ and ‘ will work

• Lists
• Example: mylist=[1,1,2,3,5,…]
• First element of the list, mylist[0]
• Last element of the list, mylist[-1]

Python Dictionaries

• Dictionaries
• Has elements and attributes
• This dictionary has 3 elements

• Fish, dog and cat
• To extract an attribute, use:
dictionary[element]
Example: dictionary[dog] will
return “Spot”

Pandas Dataframes

• Use pandas to create a Data Frame, which is a matrix, but it can store
more than just numbers

• The usual call for pandas is import pandas as pd
• To create a new data frame, use pd.DataFrame

• To fill it with zeros using np.zeros, which creates an n by m matrix of zeros

Accessing elements of a data frame with one
row
• I like to label the columns, and use the syntax:

• Your_data_frame[‘your_column’]

• To label columns , use your_data_frame.columns
• If you try to assign data to a column that doesn’t already exist, pandas

will create a new column

Accessing elements of a data frame with one
row

Data Frames with Multiple Rows

• Similar to working with lists:

For more details on slicing data frames:
https://pandas.pydata.org/pandas-docs/stable/indexing.html

Python Syntax: Loops

• Loop to print integers between 1 and 10
• Print statements are different than Python 2 – remember to put the variable

in parenthesis
• 1st number in “range” is included, last is not
• Don’t forget the colon, and don’t forget to indent

• Loop over items in list:

Python Syntax: If/Else

• Check if an item appears in a list, then perform an action
• Again, don’t forget colons or to indent

Python Syntax: Functions

• You can write functions and call them in the same file:
• A function must be defined before it is called

• The function can also be written and called from another file:
• from your_file_name import your_function

Python Syntax: Try/Except

Detour: Debugging
Datastruct2.py

Debugging Programs

Insert a breakpoint – code will stop here
The line with breakpoint will not run

Debugging Window

You can resume your code
with this button

Why Use Debug vs. Run?

• Suppose you get the following error:
• AttributeError: ‘YOUR_DICTIONARY' object has no attribute ‘YOUR_DATA’

• You can use the debugger to find any item’s attributes:

Text Analysis in Python
Testriskfactors.py
Regex.py
Wordstems.py
Sectionextract.py

Topics to Cover

• Opening/reading text files
• Writing/saving text files
• Regular Expressions

Opening Files

• You can open files with open but I use the codecs package
• remember to import codecs

• Arguments for codecs.open:
• Document name
• “r” is for reading
• UTF-8, this is the default encoding for HTML

• Some characters cannot be represented in UTF-8, the replace command will put a flag
character in place of the missing one. ‘ignore’ will it dropped entirely

• Replacing ‘\n’ removes linebreaks

Writing Files

• When saving text to a file, you also use codecs.open
• New document name
• The “r” has been replaced with a “w” for writing
• Encoding

Regular Expressions

• Counting the number of words in a string
• yourstring.split() breaks a string by spaces, and puts the pieces into a list
• Len(your list) returns the number of items in a list

• You can pass any argument you want between the parenthesis in split. This
can be used to split by specific words, paragraphs, etc.

• Syntax: yourstring.split(yourdelimiter)

Regular Expressions: Example

• Finding instances of a particular word with re.findall
• See https://docs.python.org/3.6/library/re.html for details on regular

expressions syntax
• Setting up the regular expression:

• Need the \w* at the start to catch words like “deregulation”
• Here, regwords will be a list with all matches
• The “r” before the regular expression makes it a “raw” string, if this is not

included the word boundary does not work correctly

Regular Expressions

• Counting the instances of a particular word with re.finditer
• Setting up the regular expression:

• sum function – returns number of items iterated over
• “_” – because we don’t actually use the matches, “_” denotes a null argument
• re.finditer loops over the matches
• \b – word boundary

Regular Expressions

• Alternatively:

• Can use length of list to count the number of matches
• len(regwords)

Counting the Number of Sentences that
Contain a Specific String
• EX: Count the number of sentences about regulation
• Start with a string

• Break into sentences using split

• Then count the number of sentences that contain regulat*

Counting the Number of Sentences that
Contain a Specific String
• Use split to

break on “.”
• Note – this

may cause
problems if
document has
strings like
“U.S.A.”

• Use re.findall to
identify
matches

Extracting a text subsection

Desired Output:

Input:

• Suppose you want to extract text between “item1a.” and “item1b”

Extracting a string between a header and
footer [Full Code/Output]

Output:

Extracting a string between a header and
footer [Explanation]
• Break down the regular expression

• Caret (^) – This is a negation when used inside brackets. In this example, this
matches any character, except a-z, A-Z or newline between “item” and “1a”

• This will match item1a, item 1a, item.1a
• Do not confuse with ^[a-zA-Z], which matches any string that starts with a letter, which is

what the caret does outside of brackets
• Dot (.) – match any character except a newline

• Do not confuse with “\.” which matches a period

Extracting a string between a header and
footer [Explanation]
• Normally:

• * matches zero or more of the preceding expression
• In the boxed case, it would still be a match if it was written in the document as item1a,

where there are no characters between the “item” and the “1a”
• ? Matches zero or one of the preceding expression
• the “.” matches anything but a newline

Extracting a string between a header and
footer [Explanation]
• Combining “*” and “?”

• Example:
• Input “101000000000100”
• 1.*1 -> Matches 1010000000001 (greedy)
• 1.*?1-> Matches 101 (reluctant)

• For our section extraction, the boxed code will match first instance of item 1b
appearing after item 1a

Extracting a string between a header and
footer [Explanation]
• Breaking Down the Regular Expressions:

• IGNORECASE – do not require the desired string to both match characters and
capitalization

• DOTALL – normally, the “.” matches anything but a newline, dotall allows it to
match a newline character as well

Extracting a string between a header and
footer [Explanation]
• findall – puts the matches in a list, the main inputs are:

• Regular expression to match
• Where to look

• Note: You cannot perform string operations on a list, even if it has
only one item

• There is only one match in this example, so we can use section[0] to
extract it

Extracting a string between a header and
footer [Explanation]
• Substituting text in a string

• re.sub takes 3 main arguments
• Item to find
• What to replace it with
• Where to look

• The code on the previous slides will also include item 1a and item 1b
in the extracted string. We may want to remove these:

Downloading SEC Files
Based on code at https://sraf.nd.edu/
Dlpython3v4.py

testsecdownload.py

• IMPORTANT: Only download from the SEC server in “off” hours
• Opens at 9 PM EST
• Closes at 6 AM EST

• Can implement with the following code:
• Pass is needed for the code to run, otherwise you will get an indentation error

• The EDGAR_Pac.py file will be posted on canvas, make sure to put it in the
proper directory and import it at the top of your Python file

while EDGAR_Pac.edgar_server_not_available(True):
pass

Downloading and Extracting Risk Factors

1. Download the master index
2. Loop over the elements (filings)
3. Extract the risk factors section
4. Save the extracted section

Downloading the Master Index

• Use EDGAR_Pac.py to download the master index
• The master index is a data structure where each item contains the cik,

filing date, form type and firm name
• There is a separate master index for each year and quarter (based on date the

form was filed, not on the fiscal year/quarter end)

Looping over the Master Index

• Use the same syntax as you would for looping over a list
• NOTE: This code will only run between 9PM EST and 6AM EST

Checking for the Correct File Type

• There are tons of filings, and only a small fraction are 10-K’s
• In the loop, check to make sure the file is a 10-K to save time and

storage space

• Note 1: Each item in masterindex item has several elements. To refer
to an element, use the syntax item.your_desired_element

• Note 2: I previously set PARM_FORMS to only include “10-K”s

Extracting the Risk Factors Section

• Recall the example of extracting a section between two “bookends”
• The bookends might appear in multiple places

• The most common “duplicate” is in table of contents, and body of the
document.

• Remember that re.search returns a list of strings. To select the longest
element (which is usually the true risk factors section) use:

result = max(section,key=len)

Exporting the Risk Factors Section

• Make sure you choose a unique filename, I like to use the CIK (firm
id), the date the form was filed, and the form type

• Then use codecs.open

output = './testfiles2/' + str(year) + '/' + str(item.cik) \
+ '-' + str(item.filingdate) + '-' + item.form + '.txt'

For more detailed cleaning, see
https://sraf.nd.edu/textual-analysis/
And https://www3.nd.edu/~mcdonald/Word_Lists.html

Collecting Document
Characteristics
Scan_detail.py
Dataframes.py

Counting occurrences of “Regulation”
scan_detail.py
• After downloading all the risk factors sections, want to extract counts

of particular words
• Each row will be the counts for a particular document
• You can use all the regular expressions discussed previously

Finding the files

• Looping over files in a directory
• os.listdir creates a list with all the files in a particular directory

• Remember to import os
• Here, fn_index is the file number, while fn is the file name

• Note – the enumerate function adds the counter “fn_index” to the iterable “fn”

• Import the file as a string, and all the regex described previously will work

Dealing with words vs. word stems

• Want to match: regulation, regulatory and regulations
• You can use the complicated regular expression on the previous slide,

or you can stem the words

• Note – stemming is time consuming, so it may be faster to just use
regex

• Bonus – use re.compile for even more speed

Dealing with words vs. word stems

• Here, tokenizer
identifies “words”, puts
them in a list

• Note, the + matches 1 or
more

• Porter stemmer finds
the “stem” of each item
in the list

• I put the list back
together with “ “.join()

• Join appends the
elements of a list,
putting the character
before the join between
each element

How to Store the Extracted Data

• scan_detail.py writes the output to a csv file one line at a time
• An alternative is to use pandas, create a “Data Frame”, and then write

the data frame to a csv
• Remember to call pandas with: import pandas as pd

How to access elements of a data frame

• I like to label the columns, and use the syntax:
• Your_data_frame[‘your_column’]

Appending data frames to data frames

• Because you are looping over files, it may not be possible to write the
whole data frame in one shot

• Solution: At each step in the loop, append the smaller data frame (ex. a
data frame with just one row/observation) to a master data frame, and
export it to a csv

• Be careful when trying to parallelize loops

Financial Health Economics by
Koijen et. al. (2016)
http://onlinelibrary.wiley.com/doi/10.3982/ECTA11182/abstract

Summary of Results

• Firms investing in medical innovation earn 4%-6% more than
predicted by standard asset pricing models

• The authors propose this is compensation for government-induced
profit risk

• To measure this, they look at word frequencies in 10-K risk factors:
1. Healthcare firms discuss government-related risks more than average
2. Returns are negative going forward when there are threats of government

intervention
3. The medical firms with the biggest stock losses during the Clinton

healthcare reforms were more exposed to a “medical innovation factor”

Dictionary

Words vs. n-Grams

• The dictionary has both words and n-grams
• Some of the 2-grams contain standalone words

• Example: “political” and “political reforms”

• To get an accurate count:
• Count the number of n-grams and words
• Add together the counts, then subtract the # of n-gram’s containing

standalone words, times the number of standalone words in that n-gram

Words vs. n-Grams

• Example: political occurs 8 times, regulation occurs 4 times, political risk
occurs 2 times and political regulation occurs 3 times.

• Count the number of n-grams and words

• Total Word Count:
• Total matches –> 17
• Subtract overlap –> 2 from political risk, 6 from political regulation
• Final –> 17-8 = 9

Word/2-Gram # Appearances

Political 8

Regulation 4

Political risk 2

Political regulation 3

Details

1. Healthcare firms discuss government-related risks more than average
• Words from their dictionary appear 130 times on average for healthcare firms, and

77 times for non-healthcare firms

2. Returns are negative going forward when there are threats of
government intervention
• Drawdown during Clinton reforms, not during ACA

• Clinton reforms included price controls

3. The medical firms that were hurt the most during the Clinton healthcare
reforms were more exposed to a “medical innovation factor”
• Run a bivariate regression on mkt and healthcare industry, those with a higher

healthcare beta are more exposed to “medical innovation”

