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1 Introduction

There are investment firms that pay people to sit outside of factories with
binoculars to count the number of trucks going in and out. Investors do
this because each truck contains information and they believe having this
information before anyone else gives them an advantage in financial markets.
Every day, several thousands of options are traded and each trade contains
information. In the same way that information is gained by watching trucks,
there must be a way to capture information by observing the options market.
We develop a model to do just that.

Ever since Black and Scholes (1973), both academics and finance practi-
tioners have used it to garner information from the options market. Implied
volatility is calculated by inverting the Black-Scholes formula, given the mar-
ket price of an option. Option-implied stock market volatility even became
a tradable asset when the Chicago Board Options Exchange launched the
CBOE Market Volatility Index (VIX) in 1993. Becker, Clements and White
(2007), among others find that the VIX does not contain information rele-
vant to future volatility beyond that available from model based volatility
forecasts1. Alternatively, Hentschel (2003) shows that estimating implied
volatility by inverting the Black-Scholes formula is subject to considerable
imprecision when option characteristics are observed with plausible errors 2.

The risk-free rate is needed to calculate implied volatility by inverting
the Black-Scholes formula and it is usually approximated with the yield on
Treasury bills. The risk-free rate is important, as it determines the no-
arbitrage condition. Treasury bills yields, however, may not capture the
risk-free rate implicitly used by market participants to price options for a
number of reasons. People buying and selling Treasury bills probably have
different funding costs than those trading options and Treasury bill yields
are be influenced by Federal Reserve asset purchasing programs and as a
result, may not reflect market forces.

Setting the risk-free rate equal to Treasury bill yields complicates the
interpretation of implied volatility, as it then contains information on in-
vestor expectations for both the risk-free rate and the underlying security’s
volatility. This problem can be solved by setting up a system of two Black-
Scholes formulas in two unknowns and solving simultaneously for implied

1See also Canina and Figlewski (1993) and Christensen and Prabhala (1998).
2Also, Jiang and Tian (2005) find that model-free implied volatility is a more efficient

forecast of future realized volatility than model based implied volatility. On the general
relationship between risk management and financial derivatives, see Hammoudeh and
McAleer (2013).
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volatility and implied risk-free rate. We believe allowing the risk-free rate
to vary better isolates the implied volatility implicit in options prices.

Empirically, implied volatility and implied risk-free rate differ among
options on the same underlying security with different strike prices. We build
on the methods of Macbeth and Merville (1979) and Krausz (1985), using a
seemingly unrelated regressions (SUR) model to calculate point estimates of
at-the-money implied volatility and implied risk-free rate for each underlying
security. These point estimates are used in the Black-Scholes formula to re-
price the options.

We examine the impact of moneyness, time to expiration and the size
of the bid-ask spread on the difference between market prices and model-
based Black-Scholes prices. We find that as time to expiration increases, the
difference between market and model prices increases. In almost every re-
gression specification, the coefficients on moneyness and moneyness squared
have opposing signs. We believe this is explained by the volatility smile.

The difference between implied volatility calculated using a fixed risk-
free rate and the same quantity calculated with a varying risk-free rate
increases over the sample period, indicating that the additional information
becomes more important as the sample period progresses. The correlation
between the two measures of implied volatility is positive across all leads
and lags. We believe the varying risk-free rate model better fits the data
because it yields a smaller average difference between the market price and
the model-based Black-Scholes price.

The model outlined above extracts additional information from the
options market. We measure the marginal impact of allowing the risk-free
rate to vary on the volatility smile and the accuracy of VIX forecasting. The
volatility smile changes shape when using the simultaneous solution method
because there is a balancing effect between the risk-free rate and implied
volatility. In Figure 9, there is a pattern for the implied risk-free rate across
strikes that is the inverse of the pattern for implied volatility. This balancing
is not enough to get rid of the volatility smile, so the problem remains
unresolved. For forecasting the VIX, our measure of implied volatility is
superior to traditional implied volatility. This result holds both in-sample
and out-of-sample, as measured by the Diebold-Mariano test.

Finally, we examine potential trading strategies based on the discrep-
ancy between Black-Scholes prices and market prices and based on the pre-
dictability of the VIX. The simultaneous and fixed risk-free rate solutions
yield alternative relative performances in the sample period.

The paper is organized as follows. Section II discusses the simultane-
ous solution for implied volatility and the implied risk-free rate. Section III
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goes over the at-the-money adjustment using the seemingly unrelated re-
gressions model. Section IV discusses the data used in our analysis and the
output of our numerical solution. Section V examines factors that explain
the difference between model prices and market prices. Section VI inves-
tigates the marginal effect of allowing the risk-free rate to vary in several
finance problems, while Section VII overviews potential trading strategies
and Section VIII concludes. An appendix present additional information on
our numerical solution as well as performance and sensitivity analysis.

2 Simultaneous Solution for Implied Volatility and
Implied Risk-Free Rate

This section begins with a review of the Black-Scholes formula and implied
volatility, followed by a review of the literature on simultaneous solutions for
implied volatility and implied risk-free rate. We then provide a description
of our algorithm for finding the simultaneous solution.

2.1 Black-Scholes Formula and Implied Volatility

Black and Scholes (1973) created the following model for pricing a European
call option:

CallPrice = φ(d1)S − φ(d2)Ke
−rτ (1)

where d2 =
ln( S

K
)+(r−σ

2

2
)τ

σ
√
τ

= d1− σ
√
τ , S is the spot price of the underlying

security, φ(.) is the normal CDF, K is the strike price, r is the risk-free rate
of return, σ is the volatility of returns of the underlying asset and τ is the
option’s time to expiration.

For any call traded on an exchange S, K and τ are known, but σ and r,
which are meant to be forward looking, cannot be observed directly. Finance
practitioners applying Black-Scholes to price options approximate the risk-
free rate with the annualized yield on Treasury bills and approximate future
volatility with past volatility.

Implied volatility for the underlying asset’s returns can be calculated if
the option’s market price is known. After deciding on an appropriate value
for r, it is a case of one equation and one unknown. There is no closed-form
solution for implied volatility, so an optimization routine is needed. When
solving for implied volatility using Newton’s Method, the goal is to minimize
the quadratic function [C∗ − C(σn)]2 given S, K,and τ from market data
and r from Treasury bill yields, where C∗ is the market price for the call and
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C(σ) is the Black-Scholes formula evaluated at σ. Solving for σ is useful, as
it captures investor sentiment about the volatility of the underlying asset,
but we believe it still leaves out important information.

The true risk-free rate is not observable in the market, so it would be
better if both σ and r could be extracted from options data. This eliminates
the need to approximate the risk-free rate with the Treasury bill yields,
which may not accurately capture option traders’ expectations of changes
in the discount rate. The following sections discuss methods for finding both
σ and r.

2.2 Simultaneous Solutions for Implied Volatility and Im-
plied Risk-Free Rate

Pairs of call options on the same underlying security with the same time to
expiration and different strike prices are needed to solve simultaneously for
implied volatility and implied risk-free. This yields a system of two equations
and two unknowns, which is solved for the parameters of interest. Several
authors, such as O’Brien and Kennedy (1982), Krausz (1985) and Swilder
(1986) use various methods to find simultaneous solutions for σ and r. We
build on their models, using modern mathematics software packages which
allow for the use of larger datasets and more precision in the estimates for σ
and r. Appendix A discusses why an optimization routine is needed to find
this simultaneous solution.

The goal of a simultaneous solution is to solve both C1(σ, r) = C∗1 and
C2(σ, r) = C∗2 where, C∗1 and C∗2 are the calls’ market prices and C1(σ, r) and
C2(σ, r) are the first and second calls priced with the Black-Scholes formula
evaluated at σ and r. Given that σ and r both enter non-linearly into
the Black-Scholes formula, these parameters cannot be solved for directly.
Krausz’s algorithm picks a starting point and adjusts σ and r by small
increments, δσ and δr, until a solution to the system is found.

To determine the change in σ and r, Krausz’s algorithm solves the
following system for δσ and δr:

C1(σ + δσ, r + δr) = C∗1 and C2(σ + δσ, r + δr) = C∗2 (2)

To simplify the problem, Krausz uses the following first order Taylor ap-
proximation, which is valid for small δσ and δr:

Ci(σn + δσ, rn + δr) ≈ Ci(σn, rn) +
∂Ci
∂σ

(σn, rn)δσ +
∂Ci
∂r

(σn, rn)δr (3)
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Given the Taylor approximation, Equation 2 is rewritten in matrix form and
solved for δσ and δr:[

δσ
δr

]
=

1
∂C1
∂σ ×

∂C2
∂r −

∂C1
∂r ×

∂C2
∂σ

[
∂C2
∂r −∂C1

∂r

−∂C2
∂σ

∂C1
∂σ

] [
C∗1 − C1(σn, rn)
C∗2 − C2(σn, rn

]
(4)

If there is a solution to this system, δσ and δr are added to σ and r.
This process of finding δσ and δr and adding them to σ and r is repeated
until the assumptions of the Black-Scholes model are violated or the desired
level of pecision is reached. This method is computationally expensive, as
it requires evaluating four derivatives of the Black-Scholes formula at each
step. In addition, this method may not always find a solution as it relies
on the assumption that a σ and r pair exists such that C1(σ, r) = C∗1 and
C2(σ, r) = C∗2 , which may not be the case for noisy real-world data.

2.3 Proposed Method for Finding a Simultaneous Solution

Rather than set up two equations in two unknowns, we propose a single
equation to be minimized for σ and r with an optimization routine:

F (σ, r) =
1

(C∗1 )2
(C∗1 − C1(σ, r))

2 +
1

(C∗2 )2
(C∗2 − C2(σ, r))

2 (5)

This equation has advantages over the two equations model discussed above.
First, it has a mechanism for weighing the difference between the Black-
Scholes price and the market price. Without this, the solution for σ and
r will be biased toward minimizing C∗2 − C2(σ, r) if the second option in
the pair is demonstrably more expensive. In addition, this method has a
lower failure rate because it does not rely on the assumption that an exact
solution exists such that F (σ, r) = 0. The function F is a measure of the
quality of our solutions and is sensitive to moneyness, bid-ask spread and
time to expiry.

A number of different algorithms in MATLAB were tested for mini-
mizing this equation. We focus on algorithms built into the fmincon func-
tion while alternative optimization models are discussed in Appendix B.
Within the fmincon function, we experimented with two algorithms: se-
quential quadratic programming (SQP) and interior point. In both cases,
the algorithms actually run slower when we provide gradient and Hessian
information, so we use derivative-free approaches. These methods approx-
imate the gradient using finite differences and use the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) method to approximate the Hessian. Both SQP
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and interior point use similar approaches at each step of the optimization,
but they implement range constraints differently.

The interior point algorithm tries to find a point where the gradient is
equal to zero, but it weighs the quality of solutions by how close they are
to the range constraints. We impose the restriction that σ and r must be
between zero and one, because values outside of this range are empirically
unrealistic. When looking for a minimum, this algorithm chooses points that
are opposite the direction of the gradient until it reaches a balance between
getting the gradient close to zero and staying far enough away from the edge
of the feasible set.

The SQP algorithm takes a second-order Taylor Series approximation
of the function to be minimized. The quadratic approximation is minimized
directly, similar to the linearizations used in Newton’s method, allowing it-
erative improvement of the approximate minimization of the non-linear and
non-quadratic function F . Unlike interior point, this algorithm does not
discount the quality of solutions where σ and r are close to the edge of the
feasible set. The algorithm continues taking these Taylor Series approxima-
tions to adjust σ and r, until the gradient of F is sufficiently near zero.

Interior point is, on average, faster than SQP, even though it requires
more calculations per iteration. In addition, interior point achieved more
accurate solutions, with smaller average values of F 3. Both of these algo-
rithms are faster and more accurate than the algorithm developed by Krausz
(1985) and two benchmark alternatives: a brute-force approach that directly
samples F (σ, r) on an evenly spaced mesh of 200 values of σ and r, for a total
of 40,000 points; and an algorithm that applies a classical Newton’s method
to directly minimize F by satisfying its first-order optimality conditions.
The final algorithm works as follows:

1. The starting values of σ and r for each pair of options is (0.5, rt) where
rt is the Treasury bill yield on that day.

2. The interior point algorithm finds a simultaneous solution for σ and
r, starting at the point determined in step 1.

3. The patternsearch algorithm, which is another derivative-free method
in MATLAB’s optimization toolbox, is run to minimize F , starting
from the point found in step 2, to find another possible solution for σ
and r.

3See Appendix B for a detailed comparison of speed and accuracy between these two
algorithms.
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4. Starting at the point found in step 3, the interior point algorithm is
run again to minimize F and find a third possible solution for σ and
r.

5. The algorithm compares the three values of F from steps 2, 3 and 4,
choosing the (σ, r) pair which yields the smallest F .

3 At-the-Money Adjustment

After running the algorithm discussed in Section II, we obtain an implied
volatility and implied risk free rate for each pair of options. In order to
proceed with re-pricing the options, we need a point estimate for implied
volatility and implied risk free rate for each underlying security. This sec-
tion reviews others’ approaches and discusses our method for weighing the
individual estimates.

Empirically, options on the same underlying security with different
strike prices have different implied volatilities. Given that implied volatil-
ity is supposed to be a measure of volatility for the underlying security, an
adjustment is needed to extract a single point estimate for this parameter.

We believe these point estimates should not be calculated using an
arithmetic average, given the presence of two common phenomena for op-
tions: volatility skew and volatility smile. For call options, Volatility skew
is when implied volatility is highest for in-the-money options and decreases
steadily as strike prices increase. The volatility smile is when volatility is
lowest for at-the-money options and it increases as options become deeper
in-the-money or farther out-of-the-money. An example of a volatility smile
is presented in Figure 1.

To adjust for the volatility skew and the volatility smile, Macbeth and
Merville (1979) run the following ordinary least squares (OLS) regression:

σjkt = φ0kt + φ1ktMjkt + εjkt (6)

where σjkt is the model implied volatility for an option j, on security k,

at time t, εjkt is the error term and Mjkt =
Skt−Xjke−rτ
Xjke−rτ

is a measure of

moneyness. Skt is the price of the underlying security, Xjke
−rτ is the present

value of the option’s strike price and r is the Treasury bill yield. Mjkt

equals zero when, on a present value basis, an option is at-the-money, so
the estimate φ̂0kt is the implied at-the-money volatility. Essentially, φ̂0kt
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Figure 1: Volatility Smile for AAPL Options Implied volatility is differ-
ent for each strike price. It is highest for in-the-money options, decreasing
steadily as strike price increases until it hits the closing price of 194.21,
where it begins to increase again.

is the part of implied volatility that cannot be explained by variation in
moneyness.
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Krausz (1985) adapts this technique to his simultaneous solution for σ
and r. He runs an OLS regression to adjust each parameter:

σjkt = φ0kt + φ1ktMjkt + εjkt (7)

rjkt = ρ0kt + ρ1ktMjkt + εjkt (8)

where σjkt and rjkt are the model implied values for implied-volatility and
risk-free rate for an option, j on security, k at time, t. In addition, Mjkt =
Skt−Xjke−r

∗τ

Xjke−r
∗τ where Skt is the price of the underlying security, Xjke

−r∗τ is

the present value of the option’s strike price and r∗ is the average model
implied risk-free rate across all securities on a given date. In this model,
εjkt and εjkt are error terms. The at-the-money implied volatility and risk

free rate for each security are φ̂0kt and ρ̂0kt. As in the Macbeth and Merville
(1979) model, Mjkt = 0 when, on a present value basis, an option is at the
money4.

3.1 Proposed At-the-Money Adjustment

Using the average value of r in the calculation of Mjkt, r
∗, causes an endo-

geneity problem because rjkt is on both sides of Equation 8. In addition,
the fact that these regressions are run separately omits the simultaneity of
the solution for σ and r. We rewrite Mjkt to isolate r. First, we move all
terms that contain r to the left hand side of the equation:

Mjkt =
Skt −Xjke

−rjktτ

Xjke
−rjktτ → Xjke

−rjktτ (1 +Mjkt) = Skt (9)

Then, we take the natural log of each side and solve for Mjkt:

ln(1 +Mjkt) = −ln(Xjk)− ln(e−rjktτ ) + ln(Skt) (10)

For Mjkt ≈ 0, we have that ln(1 + Mjkt) ≈ Mjkt, so we can approximate
Equation (10) as

Mjkt = −ln(Xjk) + rjktτ + ln(Skt) (11)

Substituting this into Krausz’s Equations 7 and 8 gives:

σjkt = φ0kt + φ1kt(ln(Skt)− ln(Xjk) + rjktτ) + εjkt (12)

4While pairs of options are assigned the same values for σ and r, these equations are
estimated at the option level, rather than option pair level. This is because in each pair,
the options have different strikes, and as a consequence, different values for Mjkt.
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rjkt = ρ0kt + ρ1kt(ln(Skt)− ln(Xjk) + rjktτ) + εjkt (13)

An additional adjustment is required because rjkt is still on both sides of
Equation 13. This equation is solved explicitly for rjkt as follows:

rjkt =
ρ0kt

1− ρ1ktτ
+

ρ1kt
1− ρ1ktτ

(ln(Skt)− ln(Xjk)) + ε′jkt (14)

As with the Macbeth and Merville (1979) model, the constant terms, φ0kt
and ρ0kt represent the at-the-money implied volatility and risk-free rate for
the underlying security because ln(Skt) − ln(Xjk) + rjktτ = 0 for options
expiring at the money. We explicitly identify ρ0kt as follows: We start by
taking a linear approximation of 1

1−ρ1ktτ . We rewrite 1
1−ρ1ktτ as the geometric

series 1 + ρ1ktτ + (ρ1ktτ)2 + . . . for ρ1ktτ < 1, which given the units is safe
to assume. While a higher order approximation would give more accurate
results, this must be weighed against the additional computational cost. A
first order approximation yields:

rjkt = ρ0kt[1 + ρ1ktτ ] + ρ1ktτ [1 + ρ1ktτ ](ln(Skt)− ln(Xjk)) + ε
′′
jkt (15)

which is simplified as follows:

rjkt = β0+β1τ+β2(ln(Skt)−ln(Xjk))+β3(ln(Skt)−ln(Xjk))×τ+ε
′′
jkt (16)

In this equation, β0 = ρ0kt, is the model-implied at-the-money risk-free rate.
Another improvement in our at-the-money adjustment is that it ac-

counts for the simultaneity of σ and r by using a seemingly unrelated re-
gressions (SUR) model to estimate Equations 12 and 16. A SUR model
requires that the error terms across the regressions are correlated, which
makes sense for our data, given that every σ and r pair is extracted from
two options on the same underlying security with the same time to expira-
tion.

The implications of using the SUR model are more evident when con-
sidering shocks that enter the system. Without using SUR, a shock in the
error term for the risk-free rate regression has no impact on the volatility
regression. With SUR, a shock in the error term for the risk-free rate re-
gression also shocks the error term for implied volatility regression and vice
versa. Bliss and Panigirtzoglou (2004) explain that, “risk preferences are
volatility dependent”. Given the close relationship between implied risk-
free rate and implied volatility, it makes sense that a shock affecting one of
these equations should also affect the other. Finally, if there is correlation
between the error terms in the two equations, using the SUR yields smaller
standard errors for the estimated coefficients 5

5SUR only achieves smaller standard errors if two conditions are met: (1) There is
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4 Data

4.1 Data Sources and Description

The options dataset is from http://www.historicaloptiondata.com and it
contains end of day quotes on all stock options for the U.S. equities market.
This includes all stocks, indices and ETFs for each strike price and time
to expiration. Data on the VIX, Treasury bills and other market indices is
collected from the Federal Reserve Bank of St. Louis. Our empirical analysis
uses data from March 2007-March 2008. Given that we are interested in
implied volatility and the risk-free rate, Figure 2 shows the evolution of
these two quantities, as measured by the VIX6 and 3-month Treasury bills.
The risk free rate is trending downward, while implied volatility is increasing.

Figure 2: Trends Over Sample Period Our model is estimating option
implied values for the risk-free rate and volatility. We believe the VIX and
3-month Treasury bills are market-based benchmarks for these quantities.
Volatility is increasing and the risk-free rate is declining over the sample
period.

a correlation between the error terms in each equation and (2) the two equations have
different independent variables. In our model, the right hand side is different for each
equation and we believe the standard errors are correlated, so there should be efficiency
gains.

6The new VIX is a model free calculation of volatility based upon the prices of S&P500
index options and it does not rely on the Black-Scholes framework. See e.g. CBOE (2009).
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4.2 Restrictions on the Data

We restrict the data using a procedure similar to that of Constantinides,
Jackwerth and Savov (2012). First, the interest rate implied by put-call
parity is computed. The equation for put-call parity is solved algebraically
for rPut−Call as follows:

rPut−Call =
−ln(S+P−CK )

t
(17)

All the observations with values of rPut−Call that do not exist or are less
than zero are dropped. Constantinides et al. (2012) removed these options
because negative or nonexistent values for rPut−Call suggest that the options
are mispriced. All of the puts are then removed from the dataset, as we only
analyze call options. Other procedures in line with Constantinides et al. are
the removal of options with bid prices of zero and options with zero open
interest. Options with zero volume for a given day are allowed to remain in
the dataset7.

4.3 Descriptive Statistics

Figure 3 graphs the evolution of average option-implied volatility and risk-
free rate for SPX options against their market benchmarks 8. In this anal-
ysis, and all future analysis, calculations involving implied volatility and
implied risk-free rate are restricted to observations where these parameters
take values between zero and one. As discussed in Section II, the algorithm
that solves for the initial values of σ and r already sets these boundaries.
We need to make this restriction again, however, because the SUR model
does not place restrictions on φ̂0kt and ρ̂0kt.

The average option-implied risk-free rate does not track Treasury bill
rates and the average option-implied volatility does not track the VIX index.
The lack of relationship between the series calculated using our methodology
and the benchmark series indicates to us that Treasury bill yields do not
accurately represent the risk-free rate and we are getting new information
through the simultaneous solution.

In Figure 4, we compare implied volatility, calculated with the risk-free
rate fixed at the yield on 3-month Treasury bills, to the VIX index. Unlike

7Open interest is the total number of option contracts that have been traded, but not
yet liquidated. Volume is the number of option contracts traded on a given day.

8There are two commonly traded S&P 500 index options, SPX and SPY. SPX options
are based on the entire basket of underlying securities and are settled in cash while the
SPY options are based on an ETF and settled in shares.
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Figure 3: Comparison Between Market and Model The top pane of
this figure is the daily average risk-free rate implied by options, which in-
creased during the sample period, while the yield on Treasury bills declined.
The bottom pane of this figure presents our measure of implied volatility,
which sometimes follows a similar trend to the VIX, but does not track it
well. These averages are constructed with data that has not been adjusted
with the SUR model.

Figure 3, these two series follow a similar trend. This makes sense, because
according to the CBOE website: “The risk-free interest rate, R, is the bond-
equivalent yield of the U.S. T-bill maturing closest to the expiration dates
of relevant SPX options.” Both of these calculations use the same fixed risk
free rate and as a result, have similar values for implied volatility.

Table 1 presents descriptive statistics for all options. We experimented
with several different restrictions on the data using moneyness, time to ex-
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Figure 4: Implied Volatility Calculated with Fixed Risk-Free Rate
The average daily option implied volatility calculated with a fixed-risk free
rate tracks the VIX better than our measure of implied volatility.

piration, the size of the bid-ask spread, and F . We define:

M ′jkt =
Skt −X−rT τjk

X−rT τjk

(18)

where rT is the yield on 3-month Treasury bills. Our restriction on M ′ is to
within one standard deviation of its mean, excluding far in the money and
out of the money options. The restriction on time to expiration removes
options expiring fewer than 90 days in the future. We define:

Spreadjkt =
Askjkt −Bidjkt
Midpointjkt

(19)

and the restriction on the spread is to within one standard deviation of its
mean, excluding options with large spreads. The restriction on F is to values
smaller than 1

100 .
In almost all cases, the restrictions do not make a significant difference

in the variables’ averages. The only obvious change is for the risk-free rate
before the at-the-money adjustment, when restricting time to expiration or
the bid-ask spread. This implies that options closer to expiration or with
larger spreads have higher option-implied risk free rates. This is in line with
mispricing that occurs when options are close to expiration or are thinly
traded.
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Table 1: Descriptive Statistics under Alternative Restrictions

5 Determinants of Underpricing/Overpricing

This section analyzes factors that explain the difference between model-
based Black-Scholes prices and market prices.

5.1 Macbeth and Merville Regressions

Macbeth and Merville (1979) solved for implied volatility and after making
the at-the-money adjustment to this parameter, they re-price the options
using using the Black-Scholes formula. They then examine the determi-
nants of differences between market prices and Black-Scholes prices. They
run a regression of Y = CallMarket − CallB−S on moneyness and time to
expiration. We propose a similar model, but redefine Y to be a relative
difference:

Y =
|CallMarket − CallB−S |
UnderlyingPrice

(20)

and add additional terms to their regression:

Yjkt = α1 + β1M
′
jkt + β2M

′2
jkt + β3τjkt + β4τ

2
jkt

+ β5Spreadjkt + β6Spread
2
jkt + εjkt (21)

where Yjkt
9 is the relative difference between the market price and the Black-

Scholes model price for an option j, on security k, at time t, M ′jkt is defined
in Equation 18 , τjkt is the time to expiration, Spread is defined in Equation
19 and εjkt is an error term.

9We also tried using a percentage difference,
CallMarket−CallB−S

CallB−S
×100, as the dependent

variable, but this function gets unrealistically large for options with Black-Scholes prices
close to zero.
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Table 2: Descriptive Statistics under Alternative Restrictions cont.

Table 2 presents the averages across all options for key variables in each
specification. The restrictions on moneyness, time to expiration, the spread
and F are the same as those described in Section IV.

Table 3 presents the regression results. In almost every specification,
the coefficient on moneyness is negative, while the coefficient on moneyness
squared is positive. This makes sense, given the volatility smile discussed
in Section III. This pattern doesn’t hold for the specification that restricts
moneyness, which implies that there are be far in the money and out of the
money options that are biasing the regression results. The coefficients on
time to expiration and time to expiration squared are both positive across
all specifications, indicating that as options get far from expiration, their
model prices diverge from market prices Finally, the coefficient on spread
is negative, but the coefficient on spread squared is positive, indicating an
ambiguous effect.

5.2 Other Explanations for the Differences between Model
Prices and Market Prices

We do not adjust for dividends, even though many of the underlying securi-
ties in the data are dividend paying. Merton (1973) presented an adjustment
to the Black-Scholes formula for underlying securities that pay dividends.
In his model, option price is decreasing in dividend yield. Not accounting
for this makes the average Y in our analysis larger than it should be if an
adjustment for dividends were made, owing to the fact that the model prices
on average exceed the market price.

In addition to the omission of the dividend adjustment, we believe there
are certain types of options which are predisposed to low quality solutions,
as measured by the size of f = 1

(C∗)2 (C∗ − C(σ, r))2. We run the following
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Table 3: Macbeth and Merville Regressions Estimated model is Yjkt =
α1 + β1M

′
jkt + β2M

′2
jkt + β3τjkt + β4τ

2
jkt + β5Spreadjkt + β6Spread

2
jkt + εjkt

where Yjkt is the relative difference between the market price and the Black-
Scholes model price for an option j, on security k at time t. M ′jkt is a measure
of moneyness, τjkt is the time to expiration and Spreadjkt is a measure of
the size of the bid-ask spread.

regression for several specifications:

fjkt = α1 + β1M
′
jkt + β2M

′2
jkt + β3τjkt + β4τ

2
jkt

+ β5Spreadjkt + β6Spread
2
jkt + εjkt (22)

and the results are presented in Table 4. In every specification, the coef-
ficients on spread and spread squared are positive, indicating that as the
spread gets larger, f gets larger. We believe this is because a large spread
indicates illiquidity and mispricing at the bid price, ask price or both, and
as a result Black-Scholes does not price these options well.

The magnitude and significance of the regression coefficients show that
there are systematic ways in which solution quality is related to covariates
in Equation 21. Looking back at Table 3, the only significant difference be-
tween the “no restrictions” and “restrict F” specifications is the coefficients
on spread and spread squared, which become economically smaller in the
restricted specification.

6 Marginal Effect of Allowing Risk-Free Interest
Rate to Vary

Finding the simultaneous solution and making the at-the-money adjustment
yields more information. We explore whether or not this additional informa-
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Table 4: Loss Function Regressions Estimated model is fjkt = α1 +
β1M

′
jkt +β2M

′2
jkt +β3τjkt +β4τ

2
jkt +β5Spreadjkt +β6Spread

2
jkt + εjkt where

fjkt is the relative difference between the market price and the Black-Scholes
model price for an option j, on security k at time t. M ′jkt is a measure of
moneyness, τjkt is the time to expiration and Spreadjkt is a measure of the
size of the bid-ask spread.

tion is useful. The following section compares the new and old information
sets and applies the new information to several finance problems.

Figure 5 plots the difference between implied volatility calculated using
a fixed r and the same quantity calculated with r allowed to vary for SPX
options. The difference increases over the sample period, indicating that
the additional information becomes more important as the sample period
progresses.

Figure 6 presents the cross correlation function between implied volatil-
ity calculated using a fixed r and the same quantity calculated with r allowed
to vary. As expected, they are positively correlated across all leads and lags
at about 50%, with a peak at the contemporaneous correlation of over 50%.

6.1 Volatility Smile

In practice, implied volatility is different across options with different strike
prices. We explore the impact of allowing the risk-free rate to vary by
comparing the volatility smile in the simultaneous risk-free rate and fixed
risk-free rate models. Figure 7 shows this comparison for AAPL options.
Allowing r to vary does not change the pattern much, as the volatility smile
still exists.

Figure 8 is a similar plot for GOOG options. Although the volatility
skew is still apparent in the graph on the left, the pattern is less clearly
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Figure 5: IV(Fixed-r) - IV(Simuntaneous r) As can be seen in Figures
3 and 4, both measures of implied volatility are increasing over the sample
period. The implied volatility calculated with a fixed risk-free rate, however,
is increasing faster, so the difference increases between March 2007 and
March 2008.

Figure 6: Cross Correlation The cross correlation is positive across all
leads and lags, with a peak at the contemporaneous correlation

defined when r is allowed to vary.
The volatility smile looks different when using the simultaneous solu-

tion because there is a balancing effect between the risk-free rate and implied
volatility. In Figure 9, there is a pattern for the implied risk-free rate across
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Figure 7: Volatility Smile Comparison The volatility smile looks similar
when using the simultaneous solution and the fixed risk-free rate solution.
The main difference is for far in-the-money options and this is the result of
restricting implied volatility to values between zero and one

strikes that is the inverse of the pattern for implied volatility. This balanc-
ing effect, however, is not enough to get rid of the volatility smile, so the
problem remains unresolved.

6.2 Difference Between Market Price and Black-Scholes Price

The evolution of the absolute value of the difference between the market
price and the Black-Scholes price is presented in Figure 10. In both cases, we
obtain these prices by making the at-the-money adjustment and re-pricing
the options. The simultaneous solution is generally better at matching mar-
ket prices than the model with a fixed risk-free rate. The varying risk-free
rate model at a minimum better fits the data and possibly provides better
estimates of implied volatility.
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Figure 8: Volatility Skew Comparison The volatility skew looks steeper
using the simultaneous solution. Unlike the example with AAPL options,
this cannot be explained by our restrictions on values for implied volatility.

6.3 Predicting Volatility

In order to compare the accuracy of the VIX prediction under alternative
risk-free rate assumptions, we estimate in-sample and out-of-sample fore-
casts of the VIX using implied volatility on SPX options. We only use SPX
options because the VIX uses these exclusively to calculate the volatility of
the S&P 500 index. Figure 11 shows the VIX and the at-the-money implied
volatilities for varying and fixed risk-free solutions. In each specification,
implied volatility is the average across all SPX options traded on that day.

The econometric model is obtained via time series identification as:

V IXt = α+ β1V ixt−1 + β2V ixt−2+

γ0ATMV olatilityt + γ1ATMV olatilityt−1 + γ2ATMV olatilityt−2 + εt
(23)

where ATM Volatility is the at-the-money implied volatility for the
two alternative cases. The in-sample predictions refer to the forecast error
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Figure 9: Balancing Risk-Free Rate Unlike implied volatility, which is
lowest at-the-money, implied risk-free rate is highest at-the-money

εt while the out-of-sample predictions are obtained by calibrating the model
on data from March 2007 to October 2007 and calculating the dynamic
predictions for the remaining periods. In both cases, we use the Diebold
and Mariano (1995) test to determine which forecast is more accurate. The
in-sample and out-of-sample results, presented in Table 5, are both evidence
in favor of the joint implied volatility and risk-free rate model. We tested
several alternatives, including static forecasts, and the results are similar
and robust10.

For the purposes of forecasting the VIX, the traditional implied volatil-
ity model is inferior to the joint implied volatility and implied risk-free rate
model we present in this paper11.

10We also tried removing the contemporaneous at-the-money implied volatility term,
and our model still yields superior out-of-sample forecasts.

11The regressions and additional models will be posted on a website with additional
materials and are available upon request.
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Table 5: Diebold-Mariano Tests For both in-sample and out-of-sample
forecasts, we reject the null hypothesis of no difference at the 1% level.
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Figure 10: Accuracy of Repricing For the majority of the sample period,
the simultaneous risk-free rate model does a better job of matching model
prices to market prices. This changes at the end of the sample, when the
fixed risk-free rate model better matches market prices.

7 Potential Trading Strategies

7.1 Re-pricing of Options Strategy

The first trading strategy we examine is based on the re-pricing of options
after the at-the-money adjustment. We believe the model price should be a
more accurate measure of long-run value than the market price. Given this,
if there is a discrepancy between market and model prices, we defer to the
Black-Scholes price.

We define a strategy to exploit the prices differences in the data:

• Drop all observations for which the the model price differs from the
market price by more than 20%. In our opinion, these options are
mispriced and there is probably an unusual event or a data anomaly
that can explain these differences 12.

12We considered restricting F , but after dropping options whose model prices and mar-
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Figure 11: Comparing Volatility Measures SS Stands for simultaneous
solution and FRF stands for fixed risk-free rate. These variables all increase
over the sample period, but at varying rates.

• Drop observations with fewer than 90 days to expiration, because op-
tions close to expiration can have unusual price fluctuations.

• Drop observations where the difference between market and model
prices is zero.

• For the remaining options: If the market price exceeds the Black-
Scholes price, write that call option and hedge this position by buying
the underlying security. If the market price is lower than the Black-
Scholes price, buy the option.

It is possible to hedge the long call position by shorting the stock, but we
avoid shorting for simplicity. In addition, any trading strategy will incur

ket prices differ by more than 20%, almost every observation already has a small F
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transaction costs, but again for simplicity these ignored. Finally, options
are bought at the bid price and sold at the ask price, but using the bid or
ask instead of the midpoint does not make a substantive difference, as is
discussed in Appendix C.

We implement the trading strategy for March 1st, 2007. There were
502 SPX options traded that day which met the selection criteria. The
return for each option is calculated and added to the return on the stock
if the position is hedged. We then calculate the average return for the
strategy13. We excluded options expiring on March 21st 2008, because we
could not get a price for the S&P 500 index on that day and thus could not
calculate the exercise value of those options. The average position return
is about 38%, and the standard deviation is about 39%, both of which are
economically large. Implementing this same strategy on November 30th,
2007 yields an average return of about -80%, with a standard deviation of
about 29%, suggesting that the strategy’s performance is dependent on the
day selected. These returns should be measured on a risk-adjusted basis. A
popular measure for this is the Sharpe ratio: SharpeRatio =

rp−rf
σp

where
rp is the expected portfolio return, rf is the risk-free rate of return and
σp is the standard deviation of portfolio returns. For the March 1st 2007
data, the risk-free rate as measured by 3-month Treasury bills is about 5%,
making the Sharpe ratio less than one. The standard deviation would be
lower if we could hedge the long call positions, as many positions go to zero
as they expire out-of-the money.

We implement the same strategy, but instead of re-pricing the calls
with the at-the-money implied volatility from the simultaneous solution,we
use the at-the-money implied volatility calculated with a fixed risk-free rate.
We evaluate the marginal impact of the additional information from a si-
multaneous solution by comparing the results of each trading strategy. For
the March 1st 2007 data, there is an average position return of about 24%,
and a standard deviation of about 7.5%. On a risk-adjusted basis, this is
superior to the performance of the simultaneous solution strategy, but as
mentioned above, these results are sensitive to the days chosen for analysis.

7.2 VIX Prediction Strategy

Another potential trading strategy is based on predicting the VIX index and
making trades based on its expected future value. For this strategy, we use

13We do not weight each position by the degree of mispricing, but that is another
possible strategy.
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the econometric model in Equation 23 to obtain one-step-ahead forecasts of
the VIX index and define a strategy as follows:

• A position initiated during a given trading day must be closed before
the end of that trading day. We assume positions held overnight do
not collect interest.

• If the next period predicted VIX is higher than the current level of
the VIX, put the entire portfolio into shares of a product that closely
tracks the VIX and sell them at the end of the next trading day14.
We assume there is no tracking error between these products and the
index itself.

• If the next period predicted VIX is lower than the current level of the
VIX, keep the entire portfolio in cash for the next trading day.

While it would be possible to short the VIX when the next period pre-
dicted value is lower than its current value, this is avoided for simplicity. In
addition, transaction costs are ignored.

To implement the strategy, the model described in Equation 23 is cal-
ibrated using the first 160 trading days in our sample. The VIX forecasts
after the first 160 trading days are iterative, so the model is re-estimated
for every forecast using all data points before the one to be predicted. The
hypothetical portfolio starts with $100,000. A benchmark strategy includes
only the first and second lag of the VIX in Equation 23, while the competitor
strategies include measures of model based at-the-money implied volatility.
Figure 12 shows the value of this hypothetical portfolio over time. The
simultaneous and fixed risk-free rate solutions yield alternative relative per-
formances in the sample period. In particular, the simultaneous risk-free
rate model dominates the fixed risk-free model in the later periods but the
reverse occurs in the earlier periods.

8 Summary and Conclusions

We implement an algorithm that solves systems of Black-Scholes formulas
for implied volatility and implied risk-free rate. For each underlying security,
point estimates of at-the-money implied volatility and implied risk-free rate
are calculated using a seemingly unrelated regressions (SUR) model. These
point estimates are used to re-price the options using the Black-Scholes

14There are a variety of exchange traded products designed to track VIX futures includ-
ing NYSE ARCA: CVOL and VXX.
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Figure 12: Comparing Trading Strategies For the first 20 trading days,
all of the portfolios have the same performance, but in later periods, the
strategies differentiate themselves.

formula. We examine the impact of moneyness, time to expiration and size
of the bid-ask spread on the difference between market prices and model-
based Black-Scholes prices.

We find that across most of our specified restrictions, the coefficient
on moneyness is negative, while the coefficient on moneyness squared is
positive. This is explained by volatility skew and the volatility smile. The
coefficients on time to expiration and time to expiration squared are both
positive across all specifications, indicating that as options get far from
expiration, their model prices diverge from market prices.

We examine the marginal impact of allowing the risk-free rate to vary in
terms of the volatility smile and the accuracy of market volatility predictions.
The difference between implied volatility calculated using a fixed r and the
same quantity calculated with r allowed to vary increases over the sample
period, indicating that additional information becomes more important as
the sample period progresses. The varying risk-free rate model better fits the
market data and potentially provides better estimates of implied volatility,
as it is better able to minimize the difference between model-based Black-
Scholes prices and market prices. For the purposes of forecasting the VIX,
our model is superior to the traditional implied volatility model .

Finally, we outline two potential trading strategies based on our anal-
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ysis. The first uses the discrepancy between Black-Scholes prices and model
prices. We compare this strategy’s risk-adjusted return to a similar strat-
egy using implied volatility calculated with a fixed risk-free rate. The other
strategy is based on predicting the VIX index. In both cases, the simulta-
neous and fixed risk-free rate models yield alternative relative performances
in the sample period.

There are several avenues for future research that we think are fruitful.
We believe it is important to improve the accuracy of the at-the-money
adjustment by using more nonlinear terms in the SUR model. Expanding
the sample period to more recent years is needed to test the robustness
of our results. Finally, an information index based on implied volatility
calculated with a variable risk-free rate could be used in parallel to the
VIX as a measure of market volatility. In general, we believe options prices
present important information on expectations that is essential for market
participants and policy makers.
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Appendix

A The Need for an Optimization Routine

This section justifies the need for an optimization routine to minimize:
F (σ, r) = 1

(C∗1 )
2 (C∗1−C1(σ, r))

2+ 1
(C∗2 )

2 (C∗2−C2(σ, r))
2 Given that the Black-

Scholes formula is monotonically increasing in both σ and r, picking starting
values and moving against the gradient of F until a minimum is reached
would be more straightforward than the optimization routine we propose.
This, however, will not always work, as is shown in the analysis of a pair of
Agilent Technologies (NYSE:A) call options. On 3/1/2007, the stock was
trading at $31.44 and both options were 16 days from expiration. The calls
had strike prices of $27.50 and $30.00 and had bid-ask midpoints of $4.08
and $1.73.

Figure A.1 is a plot of F for this pair of options. Looking at the plot
of F , it is hard to see the global minimum, so we make small values of F
appear large on the vertical axis by plotting −log(F ) in Figure A.2. This
plot shows two things: (1) F is not monotonically increasing in σ and r and
(2) There are several local minima surrounding the global minimum.

Figure A.1: Plot of F

To dig deeper into this issue, F is divided into two pieces: f1 =
1

(C∗1 )
2 (C∗1−C1(σ, r))

2 and f2 = 1
(C∗2 )

2 (C∗2−C2(σ, r))
2. Plots of these functions

have the same issue as the plot of F : the minimum is hard to see. To resolve
this issue, the plots of −log(fi) are shown below in Figures A.3 and A.4.
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Figure A.2: Plot of -log(F)

The lack of monotonicity of fi in σ and r is apparent in both figures. There
are multiple local minima in each of these plots because as Ci−C(σ, r) gets
close to zero, it is possible to increase σ by a small amount and decrease r
by a small amount and keep C(σ, r) about the same.

Figure A.3: Plot of -log(f1)

To finalize this analysis, in Figure A.5 we superimpose −log(f1) + 5
on −log(f2). We add 5 to −log(f1) to make it easier to distinguish the two
functions. The figure mostly in yellow is −log(f1)+5 while the figure mostly
in blue is −log(f2). In the region near σ = 0.3 and r = 0.1, both of the
functions have multiple local minima, which is explains why F has multiple
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Figure A.4: Plot of -log(f2)

local minima in this region as well.

Figure A.5: Plot of -log(f1)+5 Superimposed on -log(f2)

Given the existence of multiple local minima and the lack of mono-
tonicity in σ and r, an optimization routine is needed to minimize F .
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B Alternative Optimization Methods

B.A Alternative Optimization Algorithms

While our primary algorithm for finding σ and r uses the fmincon function
built into MATLAB’s optimization toolbox, there are other algorithms that
can minimize: F (σ, r) = 1

(C∗1 )
2 (C∗1 − C1(σ, r))

2 + 1
(C∗2 )

2 (C∗2 − C2(σ, r))
2.

The optimization toolbox also contains a function designed to solve
nonlinear least-squares problems called lsqnonlin. The input for lsqnonlin is
a vector which contains the square roots of the functions to be minimized.
A potential input for lsqnonlin to minimize F as described above is:

F(σ, r) =

[C∗1−C1(σ,r)
C∗1

C∗2−C2(σ,r)
C∗2

]
(24)

To minimize the sum of squares of the functions contained in F, the algo-
rithm starts at particular values for σ and r and approximates the Jacobian
of the vector F using finite differences. Then, it solves a linearized least-
squares problem to determine how to adjust σ and r. A trust-region method
is used to control the size of these changes at each step: if the proposed
change in σ and r gets the sum of squares in F closer to zero, it is used.
Otherwise, σ and r are perturbed by a small amount and the algorithm
solves the linearized least-squares problem at the new values for σ and r .

This process is repeated until a sufficiently small sum of squares has
been achieved, or the maximum number of allowed iterations is reached. A
limit is set on the maximum number of iterations because for some pairs of
calls, there are no values of σ and r that yield a sufficiently small sum of
squares.

The lsqnonlin algorithm is faster than both the interior point and SQP
algorithms built into the fmincon function. This is because lsqnonlin gains
efficiency from that fact that the problem is known to be a minimization
of squares, which allows the algorithm to make assumptions that fmincon
cannot.

Table B.1 compares the performance of lsqnonlin to both the interior
point and SQP algorithms built in fmincon using options from March 2007.
These averages are based on using the bid-ask midpoint as the representative
price for each option.

Lsqnonlin is many times faster than SQP and is more than three times
as fast as interior point. The average F is smallest for interior point, but
lsqnonlin is not far behind. Finally, all three algorithms fail to find solutions
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Table B.1: Speed and Accuracy Comparisons lsqnonlin is the fastest
algorithm, but it is not as accurate as Interior Point.

for the same pairs of options. This leads us to believe that the inability
to find a solution is not an algorithm-specific problem, but rather an issue
where some pairs of options are so mispriced that it is impossible to pick a
σ and r pair to make F sufficiently small.

B.B Alternative Function Specifications

One of the issues with minimizing F is the somewhat random nature by
which our optimization routine selects r. The randomness arises because
there is usually a large range of r values for which a chosen value of σ makes
F small. The issue of randomness does not apply to σ as there is usually a
smaller range of σ values for which a chosen r value makes F small.

Figure B.1 below shows the surface of −log(F ) for a pair of Agilent
Technologies (NYSE:A) call options, with the red areas indicating where F
is close to zero. This shows that the range of possible σ values for which F
is small is between 0.2 and 0.3, while the same range for r values is between
0 and 0.4. The range for r is 4 times as large as the range for σ. Figure
B.2 presents a different view of the same object, which shows several local
minima along the red ridge which an optimization routine might accidentally
pick as the best value for minimizing F .

If the optimization routine selects one of the local minima, the chosen
σ is not far from the σ at the global minimum, but the value of r could be
drastically different. To address the issue of r’s randomness, we can add a
term to F as follows:

F (σ, r) =
1

(C∗1 )2
(C∗1 −C1(σ, r))

2 +
1

(C∗2 )2
(C∗2 −C2(σ, r))

2 +P (r− r∗)2 (25)

Where r∗ is the benchmark value for r and P is the degree by which values of
r are penalized as they deviate from r∗. We use the annualized three-month
Treasury bill rate for r∗. The justification for this is that it is reasonable
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Figure B.1: Plot of -log(F)

Figure B.2: Plot of -log(F) Rotated

to believe that r should be close to r∗, but this must be balanced against
minimizing the difference between the market price and the Black-Scholes
price for each pair of calls. To decide on a value for P that balances these
demands, the average size of 1

(C∗1 )
2 (C∗1 − C1(σ, r))

2 + 1
(C∗2 )

2 (C∗2 − C2(σ, r))
2,

the data fit, is plotted against (r − r∗)2, the regularization term, for all
values of P between 0.75 and 5.00 in increments of 0.25 using data from
March 2007. The result is shown in Figure B.3.

Based on Figure B.3, P = 1.25 is near the inflection point of the curve
created by the points, making it the best choice for balancing the data fit and
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Figure B.3: Determing Appropriate Size for P Setting P=1.25 achieves
the right balance between minimizing the regularization and data fit terms

regularization terms. Table B.2 compares the performance of the lsqnonlin
algorithm with the input in Equation 26 against several benchmarks:

F2(σ, r) =


C∗1−C1(σ,r)

C∗1
C∗2−C2(σ,r)

C∗2√
1.25(r − r∗)

 (26)

Setting P = 1.25 actually makes the algorithm faster. This could mean
that the global minimum is normally near r∗, so nudging r towards r∗ speeds
up the optimization routine. The average value of F is larger, but this is no
surprise, given that an additional term has been added. If we remove the
impact of adding 1.25(r− r∗)2 to F , the average is 0.0145, which is slightly
bigger than the average for P = 0.00.

The next thing to consider is the impact of setting P = 1.25 on r. Table
B.3 shows how this affects the average r and the average squared difference
between r and the annualized three-month Treasury bill rate.

As expected, setting P = 1.25 gets r closer to the Treasury bill rate,
but at the expense of almost doubling the average size of r. We conclude

39



Table B.2: Speed and Accuracy Comparisons lsqnonlin with P=1.25 is
the fastest, but it is still not as accurate as interior point, even adjusting for
the fact that F now has an extra term.

Table B.3: Impact of Adding Regularization by regularizing r with
lsqnonlin, its average size nearly doubles.

that any regularization of r is going to lose important information, so it is
better to solve for r without any restrictions.

C Appendix C: Using the Bid/Ask Prices Instead
of the Bid-Ask Midpoint

C.A Summary Statistics

Throughout the entire paper, the bid-ask midpoint is used as the representa-
tive price for each option. While this is an easy way to resolve the fact that
a bid-ask spread exists, the validity of this technique is better determined by
looking at the paper’s results using the bid and ask prices themselves. Table
C.1 presents summary statistics for the average option-implied risk-free rate
and option-implied volatility. The Implied Volatility specification fixes the
risk-free rate at the yield of the three-month Treasury bill.

Both option-implied risk-free rates and volatilities are on average higher
for the ask specification than the midpoint specification. This is because the
Black-Scholes price is increasing in σ and r, and the ask price is at least as
large, if not larger, than the midpoint price. This means the average σ and r
must be at least as large in the ask specification as they are in the midpoint
specification.
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Table C.1: Summary Statistics

Table C.2: Macbeth and Merville Regressions

C.B Macbeth and Merville Regression

We also want to examine the regression results using the bid and ask prices
instead of the bid-ask midpoint. Table C.2 presents a simplified version of
the Macbeth and Merville (1979) regressions from Section 5 for all specifi-
cations. The Implied Volatility specification uses the midpoint price, while
fixing the risk-free rate at the yield on 3-month Treasury Bills. The same
restrictions apply to these regressions that were described in Section IV.

The largest deviation among specifications occurs in the coefficient on
moneyness, which is more than twice as large for the ask specification as
it is for the bid specification. Generally speaking, however, the results are
similar, so we believe it is safe to use the bid-ask midpoint, instead of the
bid and ask prices, without losing important information.
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