An Introduction to Python
for Text Analysis

Marco Sammon

Kellogg School of Management
1/12/2017

Outline

Running Python programs in PyCharm
Python data types and syntax

Text analysis in Python

Automated downloading of SEC filings
Extracting counts of text characteristics

o s W e

Discussion of Financial Health Economics by Koijen et. al. (2016)

Running Python Programs in
PyCharm

Running Programs

* Once your interpreter is set up, you are ready to run programs

) [testpy) :"",test V: b & B | Q
H; @ test.py |
print ("starting loop")
a0 for i in range(1,11): 1i:
py 3 print (i)

il 8 if =85

SENCNR | print ("debug”)

w3l

Select program Run Debug Stop

| test v b @

Switching Programs

* In PyCharm, switching tabs in the editor does not switch the active
program

* There are two ways to switch the active program
1. Rightclick in the editor on the program of interest, and select Run

2. Use the box in the top right of the PyCharm window to select a different
program

Wi
P

) [testpy et v & B

1| @ testpy |

print ("starting loop")

for i in range(l,11): i: 5
A3 print (i)
.| if i—=h:

sqE & Q - print("debug"}
sw3l

Notes on Python 3.X Data Types
and Syntax

Python Variables and Lists

* Variables e
* Put quotes around strings print (x)

print (name)

* Lists
 Example: mylist=[1,1,2,3,5,...]
 First element of the list, mylist[0]
* Last element of the list, mylist[-1]

Python Dictionaries

* Dictionaries
 Has elements and attributes

* This dictionary has 3 elements dictionary = f{
* Fish, dog and cat 'fish': 'Bubbles’,
* To extract an attribute, use: i N il
;g 'cat’: "Frisky';
dictionary[element]

Example: dictionary[dog] will
return “Spot”

Pandas Dataframes

* Use pandas to create a Data Frame, which is a matrix, but it can store
more than just numbers
* The usual call for pandas is import pandas as pd

* To create a new data frame, use pd.DataFrame
 To fill it with zeros using np.zeros, which creates an n by m matrix of zeros

import pandas as pd

import numpy as np

n=23

m=3

df=pd.DataFrame (np.zeros((n,m}))
print (df)

Accessing elements of a data frame with one
row

* | like to label the columns, and use the syntax:
* Your _data_frame[‘your _column’]

* To label columns , use your data frame.columns

* If you try to assign data to a column that doesn’t already exist, pandas
will create a new column

cik=1
filedate="01102018"
formtype="10k"
regwords=10
words=100

addframe = pd.DataFrame (np.zeros((1l, 5)))

addframe.columns = ['eik', 'filedate', 'formtype', 'regwords', 'words']
addframe['eik']=cik

addframe['filedate'] =filedate

addframe['formtype'] =formtype

addframe['regwords'] =regwords

addframe['words'] =words

Accessing elements of a data frame with one
row

cik=1
filedate="01102018"
formtype="10k"
regwords=10
words=100

addframe = pd.DataFrame(np.zeros((1l, 35)))

addframe.columns = ['eik', 'filedate', 'formtype', 'regwords', 'words']
addframe['eik']=cik

addframe ['filedate'] =filedate

addframe['formtype'] =formtype

addframe ['regwords'] =regwords

addframe | '"words'] =words

Data Frames with Multiple Rows

* Similar to working with lists:

addframe = pd.DataFrame (np.zeros((2, 3)))

addframe.columns = ['cik', 'filedate', 'formtype', 'regwords', 'words']
print (addframe)

addframe.loc[0, 'eik']=cik

addframe.loc[0, 'filedate'] =filedate Byl Ol Sl

1. 020 0.0 0.0 0.0 0.0
cik filedate formtype regwords words

addframe.loc[0, 'formtype'] =formtype
addframe.loc[0, 'regwords'] =regwords 2 ;E 01102012 1'5”5 122 102-2
addframe.loc[0, 'Wwords'] =words

print (addframe)

For more details on slicing data frames:
https://pandas.pydata.org/pandas-docs/stable/indexing.html

Python Syntax: Loops

* Loop to print integers between 1 and 10

* Print statements are different than Python 2 —remember to put the variable
in parenthesis

e 1st number in “range” is included, last is not
* Don’t forget the colon, and don’t forget to indent

for 1 in range(1l,11):
. print{iﬂ

. . . dogs=["odie’', "courage"', "lassie' , "balto"]
¢ LOOp over ItemS IN IISt: for d[]g in d{:;gg;
. print(dogﬂ

Python Syntax: If/Else

* Check if an item appears in a list, then perform an action
* Again, don’t forget colons or to indent

dogs=['ocdie', 'courage', 'lassie’', 'balto']
isdog="garfield"
if isdog in dogs:
print (isdog," is a dog")
else:

print (isdog," is not a dog")

Python Syntax: Functions

* You can write functions and call them in the same file:
e A function must be defined before it is called

def testfun(a,b):
return a+b

print (testfun (5, 3))

 The function can also be written and called from another file:
* from your _file_name import your_function

from temp import testfun
print (testfun(5, 3))

Python Syntax: Try/Except

def funl(a):

return a*5

def fun2(a):
return a/b

1i8t=[10; "a"] 50
for item in list:
PR P T T T T Sgasa
print (funl (item)) 20

Not a number
for item in list:

try:

print (fun2 (item))
except:

print ("Not a number")

Detour: Debugging

Debugging Programs

1 print ("starting loop")
2 for i in range(1l,11):

3 prink (i)
Insert a breakpoint — code will stop here) AL 1 E
The line with breakpoint will not run 5 @ print ("debug")
Debugging Window
Debug l"test
(& | Debugger [El console +* k=2 ¥ N N A ¥
You can resume your code + | Frames T
with this button - x MainThread v ¥ | & i vocab = {NameErroriname vocab' is not defined

> B8 Special Variables

2 <module>, test.py:5
peeTTe—
8: I® run, pydevd.py:1072

® main, pydevd.py:1662

B <modules, pydevd.py:1668

2

Why Use Debug vs. Run?

* Suppose you get the following error:
 AttributeError: “YOUR_DICTIONARY' object has no attribute ‘YOUR _DATA’

* You can use the debugger to find any item’s attributes:

tem = erindexRe

[cik = {int} 1000032

8l err yoal} False

[filingdate = [int] 20100302
[#@] forn 4

[#] name = {str] 'BINCH JAMES G’

[#] path = {str] ‘edgar/data/1000032/0001181431-10-013095.txt’

Text Analysis in Python

Testriskfactors.py
Regex.py
Wordstems.py
Sectionextract.py

Topics to Cover

* Opening/reading text files
* Writing/saving text files
* Regular Expressions

Opening Files

* You can open files with open but | use the codecs package
* remember to import codecs

* Arguments for codecs.open:
* Document name

“r” is for reading

* UTF-8, this is the default encoding for HTML

* Some characters cannot be represented in UTF-8, the replace command will put a flag
character in place of the missing one. ‘ignore’ will it dropped entirely

* Replacing ‘\n’ removes linebreaks

with codecs.open('applelOk.txt', 'r', encoding='utf8', errors='replace') as myfile:

)

ftext = myfile.read() .replace('\n', '

Writing Files

* When saving text to a file, you also use codecs.open
* New document name
* The “r” has been replaced with a “w” for writing
* Encoding

; i -
't D e P T L i 5 TR S TR T oL LR S o] L, RSO, sl S el ay it P = " ' R
Wil le risk faciors secirzon o a text file

— = o S S - LR S . L .

I S S SN S Lt i L L

with eocdees.ocpen(‘aaplrcf . -txt', 'w', 'atf-8') as g:
g.write (result)
g.close ()

Regular Expressions

e Counting the number of words in a string
 yourstring.split() breaks a string by spaces, and puts the pieces into a list
* Len(your list) returns the number of items in a list

I
wordcount = len(result.split())

* You can pass any argument you want between the parenthesis in split. This
can be used to split by specific words, paragraphs, etc.

» Syntax: yourstring.split(yourdelimiter)

Regular Expressions: Example

* Finding instances of a particular word with re.findall

* See https://docs.python.org/3.6/library/re.html for details on regular
expressions syntax

» Setting up the regular expression:

S S L] v L] e A o ST T LA L WL LA tLfld i dl-LcodL .9)
— = = fa] 173 1 I3 = A — [—

regwords = re.findall (r'\b\w*regulat\w*\b', result, flags=re.IGNORECASE)
* Need the \w* at the start to catch words like “deregulation”

* Here, regwords will be a list with all matches

* The “r” before the regular expression makes it a “raw” string, if this is not
included the word boundary does not work correctly

Regular Expressions

* Counting the instances of a particular word with re.finditer
e Setting up the regular expression:

string="better ingredients, better pizza, papa john's pizza"
nummatch = sum(l for in re.finditer(r'\bpizza\b',

string, flags=re.IGNORECASE)))
print (nummatch)

sum function — returns number of items iterated over

“ 7 —because we don’t actually use the matches, “ ” denotes a null argument
re.finditer loops over the matches

\b — word boundary

Regular Expressions

 Alternatively:

- ha ry (a word 1i: 7 seque f rd char ez
= b] acters, 211 ~ZA—-50-9
= e of e pre 1 expre

regwords = re.findall (r'\b\w*requlat\w*\b', result, flags=re.IGNORECASE)

* Can use length of list to count the number of matches
* len(regwords)

Counting the Number of Sentences that
Contain a Specific String

e EX: Count the number of sentences about regulation
e Start with a string

string="I buy pizza ingredients. My dog likes bones. " \
"Pizza is still unregulated. Dog bones are heavily regqulated.”

* Break into sentences using split

['I buy pizza ingredients', ' My dog likes bones', ' Pizza 1is still unrequlated', ' Dog bones are heavily regulated']

Num sents: 4 Num reg sents: 2

* Then count the number of sentences that contain regulat*

Counting the Number of Sentences that
Contain a Specific String

* Use split to

“w)r

break on “

* Note —this
may cause
problems if
document has
strings like
“US.A”

e Use re.findall to
identify
matches

import re
string="I buy pizza ingredients. My dog likes bones. " \

"Pizza is still unregulated. Dog bones are heavily regulated."”
sents=string.split(".")

IHil.a39T P Sl ' g ' B X [e
p g L e | Ll S e 7 L v OF A | . S S | Wl

del sents[-1]
print (sents)
sentcount=0
regcount=0
for sent in sents:
sentcount=sentcount+1
regwords = re.findall (r'\b\w*regulat\w*\b', sent, flags=re.IGNOREC
if len(regwords)>0:
regcount=regcount+l
print ("Num sents: ",sentcount,” Num reg sents: ",regcount)

Extracting a text subsection

* Suppose you want to extract text between “itemla.” and “item1b”

Input: ftext="itemla. section to extract itemlb section to ignore"

Desired Output: section to extract

Extracting a string between a header and
footer [Full Code/Output]

inport re
ftext="itemla. section to extract itemlb section to ignore"

71 4 4 ol viand
rwiart R

regexTxt = 'item[”a-zA-Z\n]*1la\..*?item[*a-zA-Z\n]*1b'

#Note, this will include both "bookends"
section = re.findall (regexTxt, ftext, re.IGNORECASE | re.DOTALL)

section=section[0]
#Remove the bookends with re.sub
section = re.sub('item[*a-zA-Z\n]*1la\.',"",section, flags=re.IGNORECASE)
section = re.sub('item[*a-zA-Z\n]*1b',6 "",section,flags=re.IGNORECASE)

print (section)

Output: soction to oxtract

Extracting a string between a header and
footer [Explanation]

* Break down the regular expression
* Caret (") — This is a negation when used inside brackets. In this example, this

matches any character, except a-z, A-Z or newline between “item” and “1a”

* This will match item1a, item 1a, item.1a
* Do not confuse with *[a-zA-Z], which matches any string that starts with a letter, which is

what the caret does outside of brackets
e Dot (.) — match any character except a newline
* Do not confuse with “\.” which matches a period

regexTxt = 'item[”a-zA-Z\n]*la\..*?item[*a-zA-Z\n]*1b'

section = re.findall (regexTxt, ftext, re.IGNORECASE | re.DOTALL)

Extracting a string between a header and
footer [Explanation]

* Normally:

* * matches zero or more of the preceding expression
* In the boxed case, it would still be a match if it was written in the document as item1a,
where there are no characters between the “item” and the “1a”

* ? Matches zero or one of the preceding expression
* the “” matches anything but a newline

regexTxt = 'item[*a-zA-Z\n]*]a\..*?item[*a-zA-Z\n]*1b'

section = re.findall (regexTxt, ftext, re.IGNORECASE | re.DOTALL)

Extracting a string between a header and
footer [Explanation]

 Combining “*” and “?”

* Example:
* Input “101000000000100”
e 1.*1-> Matches 1010000000001 (greedy)

e 1.*?1-> Matches 101 (reluctant)
* For our section extraction, the boxed code will match first instance of item 1b

appearing after item 1a

'item[*a-zA-Z\n] *1la\ .*?i]em[“a—zA—Z\n]*lb'

[

regexTxt

section = re.findall (regexTxt, ftext, re.IGNORECASE | re.DOTALL)

Extracting a string between a header and

footer [Explanation]

* Breaking Down the Regular Expressions:
* IGNORECASE —do not require the desired string to both match characters and

capitalization
* DOTALL — normally, the “” matches anything but a newline, dotall allows it to

match a newline character as well

4L Ta7 ~ - 4+
TWidcd L

regexTxt

section = re.findall (regexTxt, ftext, re.IGNORECASE | re.DOTALL)

o I

[l

"hooken:

'item[*a-zA-Z\n] *1la\..*?item[*a-zA-Z\n] *1b’

Extracting a string between a header and
footer [Explanation]

* findall — puts the matches in a list, the main inputs are:
* Regular expression to match
* Where to look

* Note: You cannot perform string operations on a list, even if it has
only one item

- T O i T T T (R i COP B S | 1 I, NS o R, |

section = re.findall (regexTxt, ftext, re.IGNORECASE | re.DOTALL)

section=section[0]

* There is only one match in this example, so we can use section[0] to
extract it

Extracting a string between a header and
footer [Explanation]

* Substituting text in a string

* re.sub takes 3 main arguments
* Item to find
* What to replace it with
* Where to look

* The code on the previous slides will also include item 1a and item 1b
in the extracted string. We may want to remove these:

section = re.sub('item[”a-zA-Z\n]*1a\.',"",section, flags=re.IGNORECASE)
section = re.sub('item[”*a-zA-Z\n]*1b',"", section, flags=re.IGNORECASE)

print (section)

Downloading SEC Files

Based on code at https://sraf.nd.edu/
Dlpython3v4.py

testsecdownload.py

* IMPORTANT: Only download from the SEC server in “off” hours
* Opens at 9 PM EST
* Closes at 6 AM EST

* Can implement with the following code:
* Pass is needed for the code to run, otherwise you will get an indentation error

while EDGAR Pac.edgar server not available (True):
pass

* The EDGAR_Pac.py file will be posted on canvas, make sure to put it in the
proper directory and import it at the top of your Python file

Downloading and Extracting Risk Factors

Download the master index
Loop over the elements (filings)
Extract the risk factors section

W

Save the extracted section

Downloading the Master Index

e Use EDGAR _Pac.py to download the master index

* The master index is a data structure where each item contains the cik,
filing date, form type and firm name

* There is a separate master index for each year and quarter (based on date the
form was filed, not on the fiscal year/quarter end)

masterindex = EDGAR_Pac.downlcaad_masterindex(year! d, True)

Looping over the Master Index

e Use the same syntax as you would for looping over a list
* NOTE: This code will only run between 9PM EST and 6AM EST

while EDGAR_Pac.edgar_server_not_available{True):

pass

Checking for the Correct File Type

* There are tons of filings, and only a small fraction are 10-K’s

* In the loop, check to make sure the file is a 10-K to save time and
storage space

if item.form in PARM FORMS:

 Note 1: Each item in masterindex item has several elements. To refer
to an element, use the syntax item.your_desired _element

* Note 2: | previously set PARM_FORMS to only include “10-K"s

PARM FORMS = EDGAR Forms.f 10X3

Extracting the Risk Factors Section

* Recall the example of extracting a section between two “bookends”

* The bookends might appear in multiple places

* The most common “duplicate” is in table of contents, and body of the
document.

« Remember that re.search returns a list of strings. To select the longest
element (which is usually the true risk factors section) use:

result = max(section, key=len)

Exporting the Risk Factors Section

* Make sure you choose a unique filename, | like to use the CIK (firm
id), the date the form was filed, and the form type

output = './testfiles2/' + str(year) + '/' + str(item.cik) \
+ '-'" + str(item.filingdate) + '-' + item.form + '.txt’
°
Then use Codecs.open For more detailed cleaning, see

https://sraf.nd.edu/textual-analysis/
. And https://www3.nd.edu/~mcdonald/Word Lists.html

result = max(section, key=len)
with codecs.open (output, 'w', 'utf-8') as g

T " TR L. T -))
T e T T s T [By B, CEE B ST TEE B

nRomotsria avYi ra =k at=FalFal. i
FHREMOVE —Aablld oppdlLEs dilld Lalltilic AL

result = re.sub(r'table of contentse', ' ', result, flags=re.IGNORECASE)
result = result.strip()
result = re.sub("\g8t', ' ', resulkt) .strip()

g.write(result)

g.claged)

Collecting Document
Characteristics

Counting occurrences of “Regulation”
scan_detail.py

» After downloading all the risk factors sections, want to extract counts
of particular words

e Each row will be the counts for a particular document
* You can use all the regular expressions discussed previously

regwords = re.findall (r'\b\w*regulat\w*\b', result, flags=re.IGNORECASE)

Finding the files

* Looping over files in a directory
* os.listdir creates a list with all the files in a particular directory
* Remember to import os
* Here, fn_index is the file number, while fn is the file name
* Note — the enumerate function adds the counter “fn_index” to the iterable “fn”

filenames =|os.listdir (| ./files/' + str(year))

for fn_index, fn in enumerate (filenames) :

* Import the file as a string, and all the regex described previously will work

filenames = os.listdir('./files/' + str(year))
for fn_indexf fn in enumerate (filenames) :

= 50 A & i 1L

with open('./files/' + str(year) + '/' + fn, 'r') as f:

contents = f.read()

Dealing with words vs. word stems

* Want to match: regulation, regulatory and regulations

* You can use the complicated regular expression on the previous slide,
or you can stem the words

string: regulation regulatory regulations
tokens: ['regulation', 'regulatory', 'regulations']
stemmed tokens: regul regulatori regul

* Note — stemming is time consuming, so it may be faster to just use

regex
* Bonus — use re.compile for even more speed

Dealing with words vs. word stems

* Here, tokenizer

identifies ”words”, puts # Create p stemmer of class PorterStemmer

them in a list from nltk.stem.porter import PorterStemmer

* Note, the + matches 1 or from nitk.tokenize import RegexpTokenizer
more

wordtest="regulation regulatory regulations"

° Portlcler Ste[’nmerﬁnds p stemmer = PorterStemmer ()
j[he Stem of each item tokenizer = RegexpTokenizer (r'\w+')
in the list

print ("string: ", wordtest)

o | pUt the ||St ba”C!S . tokens = tokenizer.tokenize (wordtest)
toget.her with -]OIn() print ("tokens: ", tokens)
* Join appends the stemmed tokens = [p stemmer.stem(i) for i in tokens]

elements of a list,
Buttmg the character
efore the join between print("stemmed tokens:", stemmedcorp)

each element

stemmedcorp = " ".joln(stemmed tokens)

string: regulation regulatory regulations
tokens: ['regulation', 'regulatory', 'regulations']

stemmed tokens: regul requlatori regul

How to Store the Extracted Data

* scan_detail.py writes the output to a csv file one line at a time

* An alternative is to use pandas, create a “Data Frame”, and then write
the data frame to a csv

* Remember to call pandas with: import pandas as pd

How to access elements of a data frame

* | like to label the columns, and use the syntax:
* Your _data_frame[‘your _column’]

cik=1
filedate="01102018"
formtype="10k"
regwords=10
words=100

addframe = pd.DataFrame (np.zeros((l, 5)))

addframe.columns = ['eik’', 'filedate', 'formtype', 'regwords', 'words']
addframe['eik']l=cik

addframe['filedate'] =filedate

addframe[’' formtype'] =formtype

addframe['regwords'] =regwords

addframe ['words'] =words

outputdf= pd.DataFrame ()
year=3
i=2

printi{ocutputdf)
outputdf = ocutputdf.append (addframe)
print (outputdf)

Appending data frames to data frames

* Because you are looping over files, it may not be possible to write the
whole data frame in one shot

* Solution: At each step in the loop, append the smaller data frame (ex. a
data frame with just one row/observation) to a master data frame, and
export it to a csv

outputdf = Dutputdf.append(addframeﬂ
tl = r'tempfiles\savedata' + str(year) + 'p' + str(i) + '.csv'
outphtdt. to esw(il)

* Be careful when trying to parallelize loops

-inancial Health Economics by
Koijen et. al. (2016)

http://onlinelibrary.wiley.com/doi/10.3982/ECTA11182/abstract

Summary of Results

* Firms investing in medical innovation earn 4%-6% more than
predicted by standard asset pricing models

* The authors propose this is compensation for government-induced
profit risk

* To measure this, they look at word frequencies in 10-K risk factors:
1. Healthcare firms discuss government-related risks more than average

2. Returns are negative going forward when there are threats of government
intervention

3. The medical firms with the biggest stock losses during the Clinton
healthcare reforms were more exposed to a “medical innovation factor”

Dictionary

TABLE II
DICTIONARY FOR 10-K FILINGS®

Dictionary to Identify Government Risk

Congress

Congressional

Debt ceiling

Federal

Federal funds

Fiscal imbalance(s)
Government(s)
Government-approved
Government-sponsored
Governmental
Governmental program(s)
Government program(s)
Governmental regulation(s)

Government regulation(s)
Government approval
Government debt(s)
Government deficit(s)
Government intervention(s)
Law(s)

Legal

Legislation

Legislative

Legislatory

Patent law(s)

Political

Political reform(s)

Political risk(s)
Politics

Price constraint(s)
Price control(s)
Price restriction(s)
Regulation(s)
Regulatory
Regulatory compliance
Regulatory delay(s)
Reimbursement(s)
Subsidy

Subsidies

4The table reports the dictionary that we use to identify how frequently firms highlight risk factors that are associ-

ated with government risk.

Words vs. n-Grams

* The dictionary has both words and n-grams

* Some of the 2-grams contain standalone words
* Example: “political” and “political reforms”

*To get an accurate count:
* Count the number of n-grams and words

* Add together the counts, then subtract the # of n-gram’s containing
standalone words, times the number of standalone words in that n-gram

Words vs. n-Grams

* Example: political occurs 8 times, requlation occurs 4 times, political risk
occurs 2 times and political requlation occurs 3 times.

* Count the number of n-grams and words

Word/2-Gram # Appearances

Political 8
Regulation 4
Political risk 2
Political regulation 3

e Total Word Count:
* Total matches —> 17

* Subtract overlap —> 2 from political risk, 6 from political regulation
* Final—>17-8=9

Details

1. Healthcare firms discuss government-related risks more than average
* Words from their dictionary appear 130 times on average for healthcare firms, and
77 times for non-healthcare firms
2. Returns are negative going forward when there are threats of
government intervention

* Drawdown during Clinton reforms, not during ACA
* Clinton reforms included price controls

3. The medical firms that were hurt the most during the Clinton healthcare
reforms were more exposed to a “medical innovation factor”

* Run a bivariate regression on mkt and healthcare industry, those with a higher
healthcare beta are more exposed to “medical innovation”

