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Abstract

This paper studies how the introduction of ETFs, and the growth of ETF ownership,

can change investors’ learning behavior. I develop a rational-expectations model where

agents decide (1) whether they want to become informed or not and (2) if informed,

how to allocate their limited attention between learning about individual stocks and a

systematic risk-factor. Introducing an ETF does not universally increase or decrease

learning about systematic risk. If the volatility of the systematic risk-factor is large, risk

aversion is high, or the cost of becoming informed is high, introducing the ETF leads

investors to devote more attention to the systematic risk-factor. Otherwise, the ETF

may lead investors investors to learn more about the individual stocks. I decompose the

effect of introducing the ETF into 2 channels: (1) Changes in the share of agents who

decide to become informed (2) Re-allocation of attention among informed investors.

I then extend the model, allowing an intermediary to buy the underlying stocks and

create more shares of the ETF. Finally, I link the model’s predictions to empirical

evidence on the growth of ETF ownership and less informative stock prices.
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1 Introduction

Sammon [2020a] shows that stock prices before earnings announcements have become less

informative over the past 30 years. Between 1990 and 2018, pre-earnings trading volume

dropped, the pre-earnings drift declined and the share of annual volatility on earnings days

increased. Over the same time period, there was a boom in passive ownership. ETFs

were first introduced in 1993, and have since grown rapidly, now owning almost 10% of the

US stock market1. The proposed mechanism in Sammon [2020a] is that passive ownership

decreases incentives to gather information on individual stocks. This paper develops a model

which can rationalize these empirical findings.

I develop a model which features a systematic risk-factor that affects all assets, but

initially there is no way to directly trade this risk. I then introduce an ETF, which is an asset

only exposed to systematic risk. The effect of introducing the ETF on price informativeness

can be decomposed into two parts: (1) Changes in the share of investors who decide to

become informed (2) Changes in the share of attention investors devote to systematic risk. I

find the sign of these effects is ambiguous. The ambiguity stems from the trade-off between

earning high trading profits and avoiding portfolios that seems too risky. Which of these

forces dominates depends on agents’ effective risk aversion, and more broadly, the risk-

bearing capacity of the economy.

Introducing the ETF can reduce the number of agents who decide to become informed

by making uninformed investors better-off in equilibrium. This occurs when the risk-bearing

capacity of the economy is relatively low i.e. if risk aversion is high, or if the systematic

risk-factor is more volatile, relative to the individual stocks. Agents can only trade a limited

number of assets (as in e.g. Merton [1987]), so the ETF is ex-ante less risky than all

1Another 5% of the market is owned by passive index mutual funds.
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feasible portfolios of the underlying stocks, as such portfolios will always be exposed to some

idiosyncratic risk. Because they have less precise posterior beliefs, uninformed investors are

effectively more risk averse than informed investors, and thus prioritize holding lower risk

and/or more diversified portfolios. As a result, uninformed agents make up the majority of

long positions in the ETF, and are made better off by its introduction.

If the risk-bearing capacity of the economy is high i.e. both risk aversion and systematic

risk are low, introducing the ETF can increase the number of agents who decide to learn.

This is because without the ETF, investors cannot perfectly replicate the systematic risk-

factor by buying or selling a portfolio of all the individual stocks. Informed investors see

higher upside in betting on stocks, because idiosyncratic risk-factors are more volatile than

the systematic risk-factor. Introducing the ETF allows agents to hedge out systematic risk

when they bet on individual stocks, making learning about idiosyncratic risk-factors even

more profitable. If risk aversion is sufficiently low, this force will dominate, and introducing

the ETF can actually increase the number of agents who become informed in equilibrium.

Introducing the ETF can also lead to a re-allocation of attention because it makes learning

about the systematic risk-factor relatively more profitable. This is for two reasons: (1) It is

more profitable to learn about the systematic shock because informed investors can bet on

it directly (2) Uninformed agents use the ETF’s price as a signal for the systematic shock.

All of the assets in the economy are exposed to this shock, so superior knowledge on this

risk-factor can lead to large expected utility gains. To retain their information advantage

over uninformed agents, informed investors may devote more attention to learning about

systematic risk when the ETF is present.

Introducing the ETF also has implications for risk premia i.e. expected returns. With-

out the ETF, informed agents cannot perfectly hedge out systematic risk when betting on
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individual stocks, making all their investments riskier. In addition, without the ETF, un-

informed agents are forced to hold more stock-specific risk. By making it easier to form

low-risk portfolios, and allowing for more precise hedging, introducing the ETF can decrease

expected returns in the economy.

Which of these forces dominates depends on model parameters. I focus on the effect

of varying (1) risk aversion (2) the volatility of the systematic risk-factor, relative to the

idiosyncratic risk-factor (3) the cost of becoming informed, which determines the share of

investors who decide to become informed in equilibrium. Fixing the cost of becoming in-

formed, introducing the ETF decreases the share of investors who decide to learn, as long as

risk aversion or systematic risk are not too low. Fixing the share of agents who become in-

formed, when risk aversion, the volatility of systematic risk, or the cost of becoming informed

are high, introducing the ETF decreases learning about the individual stocks.

The next step is linking learning to price informativeness. I create model-analogues to

the empirical informativeness measures in Sammon [2020a]: pre-earnings trading volume, the

pre-earnings drift and the share of volatility on earnings days. Empirically, the growth of

passive ownership has decreased pre-earnings price informativeness. This is shown causally

through increases in passive ownership associated with the S&P 500 index additions and

Russell 1000/2000 index rebalancing. This is consistent with the predictions of the model

when risk aversion is high, and/or systematic risk is high.

The natural experiments in Sammon [2020a], however, are not perfect analogues to in-

troducing an ETF in the model. To better link the model to the data, I propose a new

natural experiment which relies on the staggered introduction of sector-specific ETFs. I find

that when a sector ETF is introduced, firms in that sector experience a decrease in price

informativeness, relative to firms outside of these sectors.
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As an alternative way to link the model’s predictions to the empirical results in Sammon

[2020a], I develop an extension where the size of passive ownership can vary. I introduce

an intermediary (she) who can buy stocks and put them into an ETF. By creating more

shares of the ETF, however, she bears more basis risk. Thus, varying her risk aversion will

endogenously change the amount of passive ownership. I present a calibration that shows a

monotonic decrease in price informativeness as we (1) introduce the ETF and (2) increase

the size of the ETF (by decreasing the intermediary’s risk aversion).

This paper builds on two models. The version of the economy without the ETF is similar

to Admati [1985], except I have added an additional risk and endogenous information choice.

The version of the economy with the ETF is similar to Kacperczyk, Van Nieuwerburgh, and

Veldkamp [2016], but I’ve (1) made the asset for trading systematic risk in zero average supply

(2) added a fixed cost of becoming informed. The first change change is to better map their

model to my setting: ETFs are just bundles of underlying shares, and their introduction

does not actually increase the average amount of systematic risk in the economy. This

remains true in the version of the model where the size of passive ownership can vary. The

intermediary’s technology ensures that the amount of systematic risk in the newly created

shares of the ETF is exactly equal to the amount of systematic risk in the underlying stocks

used to create these shares of the ETF.

The reasons behind the rapid growth of passive ownership are interesting, but somewhat

outside the scope of this paper2. I take the introduction of an ETF as given, and study the

effect on agents’ learning behavior. This leaves the possibility that omitted factors led to

both the introduction of ETFs and the empirical decrease in learning about individual stocks.

2In the version of the model where the ETF intermediary is present, the size of the ETF increases as her
risk aversion decreases. One interpretation of this is that real-world intermediaries’ (e.g. ETF arbitrageurs)
ETF creation technology has improved (via improved high-frequency trading algorithms, increased liquidity,
etc.), and this corresponds to an effective decrease in their risk aversion.
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While a model cannot rule this out, quasi-experimental evidence in Sammon [2020a] and this

paper suggest a causal relationship between increase in passive ownership and decreased price

informativeness.

The paper is organized as follows: Section 2 sets up the model, and explains my numerical

solution method. Section 3 studies how the model’s predictions for the decision to become

informed, and endogenous learning change as we vary (1) the volatility of systematic risk

(2) risk aversion (3) cost of becoming informed. Section 4 lays out the model’s predictions

for the effect of introducing an ETF on price informativeness, and examines how predictions

change as we vary the parameters of interest. It also relates the model’s predictions to

the introduction of Sector ETFs. Section 5 extends the model to allow the size of passive

ownership to vary, and a presents calibration which matches the empirical results in Sammon

[2020a]. Section 6 concludes.

2 Model

This section develops the baseline version of the model. The key model ingredients are (1)

Assets are exposed to both idiosyncratic and systematic risk (2) Imperfectly informed agents

(3) Endogenous information acquisition (4) Three periods. When the ETF is not present,

the model is similar to an Admati [1985] economy with n idiosyncratic risks, one systematic

risk and n assets. Because there are more risks than stocks, I need to solve for optimal

attention allocation numerically. I then introduce an ETF, which is an asset that is only

exposed to the systematic risk-factor. When the ETF is present, the economy is similar to

the setting in Kacperczyk et al. [2016].
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t = 0 � • Agents make binary

decision to pay c and become

informed or stay uninformed.

• If informed, decide how to

allocate attention to the

underlying risks

t = 1 � Informed agents receive
private signals. All agents
submit demands

t = 2 � Payoffs realized, agents
consume

Table 1: Model Timeline

2.1 Setup

Timing

The model has three periods. At time 0, agents decide whether or not to become informed,

and how to allocate their limited attention to the underlying risks. At time 1, agents receive

signals about assets’ terminal payoffs, and submit demand functions. At time 2, payoffs are

realized and agents consume their terminal wealth. Table 1 presents a timeline of the events

in the model. While the baseline setting only has one uncertainty event, Section A.7 of the

Appendix presents an infinite horizon version of the model.

Agents

The model features three types of agents. There is a unit mass of rational traders which fall

into two groups: informed and uninformed investors. They both have CARA preferences

over time 2 wealth. At time 1, informed investors receive signals about the assets’ time two

payoffs. The precision of these signals depends on how informed agents allocate their limited

attention. Uninformed traders can only learn about terminal payoffs through prices. The
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third set of agents are noise traders, which have random demand at time 1, and prevent

prices from being fully informative.

Assets

Before introducing the ETF, there are n assets. Asset i has time 2 payoff:

zi = ai + f + ηi (1)

where ηi
iid∼ N(0, σ2

i ) and f ∼ N(0, σ2). Each asset has xi, shares outstanding and noise trader

demand shocks shocks xi
iid∼ N(0, σ2

i,x). The ηi, f and xi shocks are all jointly independent.

In this economy there are n + 1 risks: one idiosyncratic risk for each asset, ηi, and one

systematic risk, f 3.

For the baseline version of the model, I assume that σ2
i = σ2, xi = x and, σ2

i,x = σ2
x i.e.

all the assets are symmetric. This is not needed, but it simplifies the numerical technique for

solving the model. For an extension where individual assets load differently on systematic

risk, and have heterogeneous idiosyncratic risk and supply shocks, see Section A.1 of the

Appendix.

Throughout the paper, I assume that the number of assets is sufficiently small so that

idiosyncratic risk cannot be totally diversified away. As the number of assets grows to

infinity, introducing an ETF has no effect. This model does not feature trading costs, so

with an infinite number of stocks, agents could replicate the payoff of the ETF by buying

an equal-weighted portfolio of all the individual assets. One can view this restriction to a

small number of assets as a reduced-form way of modeling transaction costs: Trading the

3When the ETF is not present, there may be a version of this economy where asset returns have the
same correlation structure, but there is no systematic risk-factor. The setup with a systematic risk-factor,
however, is needed to make the learning technology comparable between economies when the ETF is and is
not present. See Section A.5 of the Appendix for a more thorough discussion of this issue.
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first n assets is free, but then trading costs go to infinity if the investor wanted to trade an

additional asset (see e.g. Merton [1987]).

Signals

If agent j decides to become informed, they receive noisy signals at time 1 about the payoffs

of the underlying assets :

si,j = (f + εf,j) + (ηi + εi,j) (2)

where εi,j
iid∼ N(0, σ2

εi,j
), εf,j ∼ N(0, σ2

εf,j
) and εi,j are independent for all permutations of i

and j, as well as independent from εf,j. As agent j allocates more attention to risk i, σ2
εi,j

decreases in a way that depends on the learning technology.

Learning

Agent j can allocate attention Ki,j to risk-factor ηi or f to reduce signal noise:

si,j = (f + εf,j) + (ηi + εi,j)

σ2
εi,j

=
1

α +Ki,j

, σ2
εf,j

=
1

α +Kn+1,j

(3)

where α > 0. This differs from the setup in Kacperczyk et al. [2016], where the learning

technology is σ2
εi,j

= 1
Ki,j

. In my setting, I need σ2
εi,j

to be well defined even if agents devote no

attention to asset i4. A way to think about α is that informed agents all have a “finger on the

pulse” of the market, and know a little bit about each asset, even without explicitly devoting

attention to it. I set α = 0.001, and in unreported results, I find setting alpha anywhere

between 0.0001 and 0.05 does not qualitatively change the results. Informed agents have a

total attention constraint of
∑

iKi ≤ 1.

4This is because in my setting, the risk-factors are not fully separable. For example, if ε1,j has infinite
variance, but εf,j has finite variance, the variance of s1,j is still not well defined. In Kacperczyk et al. [2016],
each of the rotated assets is only exposed to one risk, so devoting no attention to that risk leads to a precision
of zero, but does not have spill-over effects on other assets.
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Portfolio Choice

Define:

w2,j = (w0,j − 1informed,jc) + q′j(z− p) (4)

where w0,j is initial wealth, c is the cost of becoming informed (in dollars), z is the vector of

terminal assets payoffs, p is the vector of time 1 prices and 1informed,j is an indicator equal

to 1 if agent j decides to become informed. Here, and everywhere else in the paper, boldface

is used to denote vectors.

Agent j submits demand qj to maximize their time 1 objective function:

U1,j = E1,j[−exp(−ρw2,j)] (5)

where ρ is risk aversion. I use Et,j to denote the expectation with respect to agent j’s time

t information set. For informed agents, the time 1 information set is the vector of signals sj

and the vector of prices, p. For uninformed agents, the time 1 information set is just prices.

Prices

Suppose we fix the information choice of informed investors at some set of Ki,j’s. Then,

the model is equivalent to Admati [1985]. This is because, in the setup above, agents

do not independently receive information about the (n + 1)th risk-factor i.e. there is no

sf,j = (f + εf,j). This means that agents think only in terms of asset payoffs, rather than

risk-factor payoffs. For example, agent j’s asset 1 signal is: s1,j = (f + εf,j) + (η1 + ε1,j)
5.

This is centered on f+η1 so it is an unbiased signal about the payoff of asset 1. The variance

of this signal is var(εf,j) + var(ε1,j) because all signal noise is independent. All investors

know the correlation structure of asset returns, so when agent j is calculating their posterior

5For clarity, in this example, I exclude all the mean payoff terms.
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mean for asset 2, they still consider signal 1, as the assets are correlated via their common

exposure to systematic risk. Further, when deciding what to learn about, agents understand

that devoting attention to systematic risk will reduce the variance of all of their asset signals.

For these reasons, I do not find this assumption too restrictive, but it is needed to solve the

model, fixing information choices, using the closed form solutions in Admati [1985]6.

Define µ as the vector of ai i.e. the vector of mean asset payoffs. Further define x as the

vector of xi i.e. the vector of shares outstanding for each asset. Define (n + 1) × (n + 1)

matrix Γ as:

Γ =



1 0 . . . 0 1

0 1 . . . 0 1

. . . . . . . . . . . . . . .

0 0 . . . 1 1

0 0 . . . 0 1


(6)

If we define η as the vector of ηi’s and f (where f is the last entry), then the terminal payoffs

can be written as z = µ+Γη7 Note that this includes a row for a hypothetical (n+1)th asset

with payoff zn = an + f even though without the ETF, agents cannot trade that asset or

observe its price. This row will be removed, but it is useful to include it here for comparing

this setup to the economy where the ETF is present.

6Without this assumption, there is no closed-form solution for the price function, as discussed in Section
6 of Admati [1985]. To solve the model without this assumption, one would need to numerically solve for
prices such that the market clears. The price function would be of the form p = Ã0+Ã1η+Ã2f+Ã3x, where
x is a vector of supply shocks. In unreported results, I find it difficult to solve for these Ai numerically,
because it involves the product of one of the price coefficients A1 with the inverse of another one of the
price coefficients A−1

2 . This can lead to arbitrarily large offsetting entries in these matrices, and numerical
instability of the solution.

7If the assets had different loadings on systematic risk, the 1’s in the last column would be replaced by
βi’s, i.e. the loadings of each stock on systematic risk, as discussed in the Appendix A.1.
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Define the variance of asset payoffs, V as:

V = Γ



σ2
1 0 . . . 0 0

0 σ2
2 . . . 0 0

. . . . . . . . . . . . . . .

0 0 . . . σ2
n 0

0 0 . . . 0 σ2
f


Γ′ (7)

Define the matrix of asset signal variances for agent j as:

Sj = Γ



1
α+K1,j

0 . . . 0 0

0 1
α+K2,j

. . . 0 0

. . . . . . . . . . . . . . .

0 0 . . . 1
α+Kn,j

0

0 0 . . . 0 1
α+Kn+1,j


Γ′ (8)

I restrict to equilibria where all informed agents have the same attention allocation, so Sj = S

for all j i.e. all informed agents have the same attention allocation so Ki,j = Ki
8.

Define the variance-covariance matrix of asset noise shocks as U = σ2
xIn where In is an n×

n identity matrix. Define the vector of noise shocks as x, which is normally distributed with

mean zero and variance U . The available supply of each asset to informed and uninformed

investors is x + x i.e. the number of shares outstanding plus/minus demand from noise

traders.

In the economy without the ETF we need to remove the last row and last column of

every matrix, as well as the last row of every vector. Any matrix with a superscript t has

8For discussions of non-symmetric equilibria, see e.g. Veldkamp [2011]
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been truncated i.e. has had the last row and column removed. Any vector with a superscript

t has had the last row removed.

Define Qt as:

1

ρ
× φ×

(
St
)−1

(9)

where φ is the share of rational traders who decide to become informed at cost c.

The equation for equilibrium prices comes directly from Admati [1985]:

p = A0 + A1z− A2(x + x)

A3 =
1

ρ

((
V t
)−1

+Qt ∗ (U t)−1 ∗Qt +Qt
)

A0 =
1

ρ
A−13

((
V t
)−1

µt +Qt(U t)−1xt
)

A1 = A−13

(
Qt +

1

ρ
Qt(U t)−1Qt

)
A2 = A−13

(
In +

1

ρ
Qt(U t)−1

)
(10)

Demands

Having solved for the price, we can solve for demands. In this section, we continue to use

the truncated versions of all the model objects. To avoid excessive use of superscripts, I omit

the t even though all the objects here have the last row/column removed.

Define the constant matrix γ = ρ
(
A−12 −Q

)
. There are separate demand functions for

the informed and uninformed:

Uninformed: Demand=G0 +G2,unp

Informed, agent j: Demand=G0 +G1sj +G2,infp

(11)
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where sj is the vector of signals received by agent j and:

G0 = A−12 A0

G2,un =
1

ρ
γ

G2,in =
1

ρ

(
γ + S−1

)
G1 =

1

ρ
S−1

(12)

Many of objects in the demand function can be used to compute agents’ posterior beliefs

about mean asset payoffs. For informed agents, the posterior mean conditional on signals

and prices is:

E1,j[z|sj,p] = B0,in +B1,insj +B2,inp

V a
in =

(
V −1 +QU−1Q+ S−1

)−1
B0,in = ρV a

inG0

B1,in = ρV a
inG0

B2,in = In − ρV a
inG

′
2,in

(13)

For uninformed agents, the posterior mean conditional on prices is:

E1,j[z|p] = B0,in +B2,unp

V a
un =

(
V −1 +QU−1Q

)−1
B0,un = ρV a

unG0

B2,un = In − ρV a
unG

′
2,un

(14)

Deciding to Become Informed
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At time zero, agent j decides whether or not to pay c and become informed. They make this

decision to maximize the time 0 objective function:

U0,j = −E0[ln(−U1,j)]/ρ (15)

where the time 0 information set is the share of agents who decide to become informed. This

simplifies to:

U0,j = E0 [E1,j[w2,j]− 0.5ρV ar1,j[w2,j]] (16)

because time two wealth is normally distributed. See Section A.4 of the Appendix for a

discussion of how these preferences differ from expected utility i.e. U0,j = E0,j[U1,j].

In this setting, I do not have closed-form solutions for U0,informed and U0,uninformed, but

I can obtain them through simulation. Solving for c directly would be computationally

intensive, as the model would have to be re-solved at each proposed combination of c and

share of informed investors to check that U0,informed = U0,uninformed. It is easier to solve for

c by creating a grid for the share of informed agents between 0 and 1. Then, at each point

on the grid, compute the difference in expected utility between informed and uninformed to

back out c.

2.2 Equilibrium

As in Kacperczyk et al. [2016], I am going to assume a symmetric equilibrium. This means

that all informed agents have the same Ki,j = Ki. There likely exist asymmetric equilibria,

but I do not focus on them in this paper (see e.g. Veldkamp [2011]). In addition, I assume

that assets 1 to n have the same: (1) Mean (2) Systematic risk (3) Idiosyncratic risk (4)

Supply shock variance. This assumption reduces an otherwise n dimensional problem (the
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(n+1)th dimension is accounted for by the total information constraint) to a two dimensional

problem: Informed agents must only decide to allocate Kn+1 attention to systematic risk,

and (1−Kn+1)/n to each idiosyncratic risk-factor. This strong assumption is not needed, and

it does not change any of the model’s predictions, but it drastically speeds up the numerical

solution method. For details, see Section A.1 of the Appendix, where I discuss how to solve

a version of the model with this assumption relaxed.

Another possible issue is that the equilibria I find are not unique. Without closed form

solutions, I cannot fully rule this out, but I have tried starting my numerical method at

every point on the solution grid and I find it always converges to the same solution.

At time 1, given Ki’s and the share of informed agents, the equilibrium is equivalent to

that in Admati [1985]. At time zero, we know we are at an equilibrium if: (1) no informed

or uninformed agent would improve their expected utility by switching to the other type and

(2) no informed agent would improve their expected utility by re-allocating their attention.

As discussed above, condition 1 is going to be met by construction, as I back out c for a

given share of informed agents, to make the expected utility of both groups equal. I rely on

condition 2 to develop my numerical method in the next subsection.

2.3 Numerical Method

Fixing the share of informed agents, I use the following algorithm to numerically solve for

Ki’s:

1. Start all agents at K0

2. Consider an atomistic agent j who takes K0 as given, and considers their expected

utility by deviating to K1
j near K0. These deviations are small increases/decreases in
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the share of attention spent on the systematic risk-factor.

3. If j can be made better off, move all informed agents to K1

4. Iterate on steps 2 and 3 until j can no longer improve their expected utility by deviating.

Discussion

At this point, it is not clear why a numerical method is needed to solve the model. Two

possible alternative solution methods are (1) Adding the (n + 1)th risk to Admati [1985].

This will not work, as discussed in the original paper, as there is no closed form solution

for prices and demands with more risks than assets. (2) Deleting the (n + 1)th asset from

Kacperczyk et al. [2016]. This is not viable because the rotation used to isolate risk-factors

and solve the model will not work if the number of risks is greater than the number of assets.

Finally, we cannot use a benevolent central planner to solve the problem: I find that in the

competitive equilibrium, attention is more concentrated on a small number of risks, relative

to what would maximize total expected utility for informed and uninformed agents.

It also seems as though it should be possible to map the no-ETF economy to an economy

with independent assets/risks via an eigendecomposition (see e.g. Veldkamp [2011]). Having

done this, it would be straightforward to solve the model using the technique in Kacperczyk

et al. [2016]. While this is possible, it still relies on numerical methods, to make sure that

after reversing the rotation, the solution is feasible under the proposed learning technology.

See Appendix section A.8 for more details.

2.4 Introducing the ETF

Introduce asset n+ 1, the ETF:

zn+1 = an+1 + f (17)
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Asset n + 1 has average supply x = 0, but is still subject to supply shocks xn+1 = x̃n+1 +∑n
z=1 xz where x̃n+1 has the same distribution as all the xi for assets i equal 1 to n. This

implies that the supply shock for the (n + 1)th asset is the sum of the supply shocks to the

n individual assets, as well as another independent supply shock x̃n+1. I define the ETF

noise shocks this way based Ben-David, Franzoni, and Moussawi [2018] and Chinco and Fos

[2019], which document transmission in noise shocks between the ETFs and the underlying

assets.

These assumptions on the supply of the ETF are important for two reasons (1) We

need supply shocks in the ETF, otherwise its price would be a fully revealing signal for the

systematic risk-factor (2) the ETF must be in zero average supply so its introduction does not

increase average systematic risk9. If we assume that x̃n+1 ∼ N(0, σ2
x), then the noise shock

for the (n+1)th asset has total volatility σ2
n,x = (n+1)×σ2

x. Define Ũ = (Γ′)−1 σ2
xIn+1 (Γ′)−1 .

Informed agent j receives signals about the payoffs of all the underlying assets, including

asset n+ 1:

si,j = (f + εf,j) + (ηi + εi,j) for i = 1, . . . , n

sn+1,j = (f + εf,j)

(18)

Note that εf,j in the first and second lines of this equation are identical i.e. there is only

one systematic shock. The learning technology and total attention constraint are unchanged

from the economy where the ETF is not present.

The price and demand functions are also unchanged from the setup without the ETF,

but instead of using the truncated versions, we use the full versions i.e. use S instead of St,

9Although it does not increase the average supply of systematic risk, introducing the ETF does introduce
additional noise-trader risk.
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and use the new noise shock matrix Ũ . We can also use the same numerical method to solve

for the optimal allocation of attention, and cost of becoming informed.

Effect on posterior mean/variance

Introducing the ETF changes the way agents form beliefs about asset payoffs. Define sp =

z + εp as the signal about asset payoffs contained in prices. From the price function, sp =

A−11 (p − A0), which implies that εp = A−11 A2(x + x) and Σp = A−11 A2U where U is the

variance-covariance matrix of supply shocks. This implies that sp ∼ N(0,Σp). Without the

ETF:

Σ̂−1j︸︷︷︸
Posterior Precision

= V −1︸︷︷︸
Prior Precision

+ Σ−1p︸︷︷︸
Price Precision

+ S−1j︸︷︷︸
Signal Precision

(19)

With the ETF, agents observe sp,n+1 i.e. the signal about payoff of the (n + 1)th asset

contained in asset prices. This will change Σ−1p i.e. the price precision, but nothing else.

This is because fixing attention allocation, introducing the ETF has no effect on S−1j for

assets 1 to n. For any asset i, si,j = (f + εf,j) + (ηi + εi,j), so var(si,j) = var(εf,j + εi,j) =

var(εf,j) + var(εi,j) by independence.

When the ETF is not present, the posterior mean of f will be:

E1,j[z]︸ ︷︷ ︸
Posterior Mean

= Σ̂j︸︷︷︸
Posterior Variance

×

 S−1j︸︷︷︸
Precision on Asset Signals

sj + Σ−1p︸︷︷︸
Price Precision

sp

 (20)

With the ETF, agents can separately weigh their signal for f by its own precision:

E1,j[z]︸ ︷︷ ︸
Posterior Mean

= Σ̂j︸︷︷︸
Posterior Variance

×

 S−1j︸︷︷︸
Precision on Risk-Factor Signals

sj + Σ−1p︸︷︷︸
Price Precision

sp

 (21)
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where the terms that have changed are in color. To see how this works, we can use the

eigendecomposition in Veldkamp [2011] to isolate the risk-factors. Pre-multiplying z by Γ,

we create synthetic assets exposed to only one risk-factor:

z = µ+ Γη ↔ z̃ = Γ−1µ+ η

s̃i = ηi + ε̃i for i = 1, . . . , n

(22)

With this rotation, the supply of the synthetic assets is (Γ′)−1(x + x), but at this point,

the signals may still be correlated. After another transformation to make the signals inde-

pendent, we can solve for the equilibrium in this economy using the numerical technique in

Kacperczyk et al. [2016]10, and then rotate back to the economy with payoffs z and signals s.

This rotation can be used as a check on the numerical method, as it allows me to compare my

numerical solutions to the closed-form solutions in Kacperczyk et al. [2016]. In this rotated

economy, it is clear that agents are going to independently use the (n+ 1)th signal, and the

price of the (n+ 1)th asset to learn about z, something they cannot do in the no-ETF world.

To quantify the effect of introducing the ETF on investors’ posterior precisions, Table 2

contains selected entries of Σ̂. Introducing the ETF always increases the precision of both

the informed and uninformed for assets 1 to n.

Effect on learning trade-offs

When an agent is deciding whether to learn about systematic or idiosyncratic risk, they face

the following trade-off: (1) Learning about systematic risk leads to a more precise posterior

belief about every asset (2) But, volatility of systematic risk-factor (σ2
f ) is low, relative to

idiosyncratic risk-factors (σ2). This trade-off is affected by the presence of the ETF: If the

ETF is not present, agents cannot take a bet purely on systematic risk, or idiosyncratic

10I would like to thank the authors for sharing their solution code with me
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Panel A: Matching Cost of Becoming Informed
Precision

Share Informed Informed Uninformed
ρ σ2

n no ETF ETF no ETF ETF no ETF ETF

0.1 0.2 0.05 0.2 1.82 2.24 1.66 2.06
0.1 0.5 0.35 0.2 2.04 2.06 1.93 1.94
0.25 0.2 0.5 0.2 1.85 1.87 1.74 1.82
0.25 0.5 0.5 0.2 1.78 1.87 1.69 1.82

Panel B: Share Informed at 10%
Precision

Share Informed Informed Uninformed
ρ σ2

n no ETF ETF no ETF ETF no ETF ETF

0.1 0.2 0.1 0.1 1.85 2.05 1.70 1.88
0.1 0.5 0.1 0.1 1.75 1.90 1.64 1.83
0.25 0.2 0.1 0.1 1.76 1.87 1.65 1.82
0.25 0.5 0.1 0.1 1.71 1.87 1.62 1.82

Panel C: Share Informed at 30%
Precision

Share Informed Informed Uninformed
ρ σ2

n no ETF ETF no ETF ETF no ETF ETF

0.1 0.2 0.3 0.3 2.20 2.54 2.05 2.37
0.1 0.5 0.3 0.3 1.96 2.30 1.85 2.16
0.25 0.2 0.3 0.3 1.79 1.92 1.68 1.84
0.25 0.5 0.3 0.3 1.73 1.88 1.64 1.83

Table 2: Posterior Precision. Diagonal entries of Σ̂ for one of the stocks i.e. assets 1 to
n. In panel A, the cost of being informed is chosen such that 20% of agents become informed
when the ETF is present. In Panels B and C, the share of informed agents are fixed and
10% and 30% respectively. The “no ETF” column has the (1,1) entry of Σ̂ when the ETF
is not present, while the “ETF” column has the (1,1) entry of Σ̂ after introducing the ETF.
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risks11.

To illustrate this trade-off, I present a few examples with only two stocks. Figure 1

shows this trade-off when there is no ETF and the assets are not exposed systematic risk i.e.

zi = ai+ηi. The black line plots the excess profits of the informed agents in stock one, while

the red line plots the excess profits of the informed agents in stock two. As we move to the

right along the x-axis, informed agents are increasing their attention on stock 1. Initially,

allocating more attention to stock one increases the informed agents’ profit advantage in

that stock, but eventually it hits a point of diminishing returns. The price becomes too

informative about η1, which is why the black line starts to slope down. Because the assets

are symmetric, it is optimal for informed agents to allocate half their attention to each asset

(vertical red line).

Figure 1: Vertical red line denotes optimal attention allocation. All other points are not
equilibrium outcomes. 20% of investors are informed. Residual attention is on Stock 2-
specific risk. ρ = 0.1, σ2 = 0.55

Compare this to Figure 2, the case when there are two stocks, but they are both exposed

11Without the ETF, they cannot bet purely on an idiosyncratic risk, because they cannot perfectly hedge
their exposure to systematic risk from holding that asset.
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to a systematic risk-factor, which is less volatile than the stock-specific risks. Learning

more about stock-specific risks (moving to the right along the x-axis) increases profits, but

eventually there are diminishing returns for two reasons. One is that prices become too

informative, which is what happened in the last example. The other is that the stocks are

both exposed to systematic risk, and at some point, informed agents are not learning much

about a risk that affects both stocks. The slopes are different to the right/left of the optimum

attention allocation (red vertical line) because the volatility of the systematic risk is lower

than that of the stock-specific risks.

Figure 2: Two assets, systematic risk, no ETF. Vertical red line denotes optimal attention
allocation. All other points are not equilibrium outcomes. 20% of investors are informed.
Attention on stock-specific risks is equal. Residual attention is on systematic risk-factor.
ρ = 0.1, σ2

f = 0.2, σ2 = 0.55

Finally, Figure 3 shows what happens when there are two stocks, both exposed to sys-

tematic risk and idiosyncratic risk, and we introduce an ETF which is only exposed to

systematic risk. Agents can now almost uniformly increase their profits on the stocks by

learning more about them, because they will be able to isolate the stock-specific risk-factors.

In equilibrium, informed agents learn more about stock-specific risks because there is more
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money to be made betting on ηi’s – the stock specific risk-factors are more volatile than the

systematic risk-factor f . And because the agents are not very risk averse, with a CARA

risk-aversion, ρ, of 0.1, they don’t mind loading up on these volatile stock-specific risks.

Figure 3: Vertical red line denotes optimal attention allocation. All other points are not
equilibrium outcomes. 20% of investors are informed. Residual attention is on systematic
risk-factor. ETF is in zero average supply. ρ = 0.1, σ2

f = 0.2, σ2 = 0.55

2.5 Relating ETFs in the Model to ETFs in the Real-World

In this economy the ETF looks like a futures contract: it is a claim, in zero net supply, on the

payoff of the systematic risk-factor. Futures contracts, however, have existed for much longer

than ETFs. If ETFs were equivalent to futures contracts, then we would not expect to see

any of the empirical effects of growing ETF ownership (see e.g. Sammon [2020a], Glosten,

Nallareddy, and Zou [2016], Ben-David et al. [2018], Chinco and Fos [2019], among others).

Defining an ETF the way I have in the model captures some features of the real-world, and

misses others.

One thing it does capture is that ETFs make it easier for informed investors to bet on
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systematic risk. This is consistent with the fact that ETFs are more divisible than futures,

which allows more investors to trade them. For example, E-mini S&P 500 futures trade

at around $150,000 per contract, while SPY trades around $300 per share (as of June 1,

2020). The investors who benefit from this increased divisibility are not just retirees trading

in their 401K’s. According to Daniel Gamba, former head of Blackrock’s ETF business

(iShares) “The majority of investors using ETFs are doing active management. Only about

30% of ETF investors look at these as passive funds...” (2016). On a related point, ETFs

have made it easier to hedge out/short systematic risk. According to Goldman Sachs Hedge

Fund Monitor, “ETFs account for 27% of hedge funds short equity positions” (2016). This

is important, as informed investors in the model will short the ETF when taking aggressive

positions in individual stocks to hedge out their exposure to systematic risk, as we saw in

Figure 3. This feature of the model is specific to the introduction of ETFs, relative to index

mutual funds (which existed before ETFs), as (open-ended) mutual funds cannot be shorted.

Another way to link the ETF in the model to the real world comes from viewing f

as a sector-specific risk, rather than an economy-wide risk. ETFs cover more indices and

industries than futures. These sector ETFs are popular: as of June 1, 2020, there is over

$170 Billion investment in State Street’s 30 Sector ETFs. Another way to view the model

is as introducing an ETF that offers cheap diversification for particular industry. I discuss

this in more detail in Section 4.4, where I calibrate the model to match the empirical effects

of introducing sector ETFs in the late 1990’s.

The model clearly does not capture the creation/redemption mechanism, which is an im-

portant feature of ETFs that distinguishes it from index mutual funds and futures contracts.

Other models like Cong and Xu [2016] have this feature. While I think this is an impor-

tant channel, especially when talking about market-making in a Kyle [1985]-style model,
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I abstract away from this in my setting to focus on the decision to become informed and

endogenous learning channels.

3 Model Predictions & Comparative Statics

In this section, I examine the effects of introducing the ETF on learning, and how sensitive

the model’s predictions are to input parameters.

3.1 Baseline Parameters

Table 3 contains the baseline parameters. I take most of them from Kacperczyk et al. [2016]

with a few exceptions: (1) I have effectively set the gross risk-free rate r to 1 because I

want to de-emphasize the effect of time-discounting (2) I have 8 idiosyncratic assets, instead

of 2, so agents can better attempt to replicate the systematic risk-factor with a diversified

portfolio of stocks before the ETF is introduced (3) I increase the supply of the stocks. In

Kacperczyk et al. [2016], the supply of the (n + 1)th risk-factor i.e. the supply of the ETF

in the rotated economy is 15 units, and the supply of the two stock-specific risks is 1 unit

each. This implies that there is systematic risk in the economy outside the systematic risk

in the stocks: β1 × (supply of asset 1) + β2 × (supply of asset 2) is less than 15.

I make the total supply of all idiosyncratic assets equal to 20, and split this equally

among 8 stocks. I keep the number of stocks relatively small, because if there are too many

stocks, introducing the ETF has no effect. In the limit, if there were an infinite number of

stocks, agents could perfectly replicate the payoff of the ETF with the underlying securities,

and there are no trading costs that prevent this behavior. We can view the small number of

tradeable stocks as a reduced-form way of modeling transaction costs.
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Mean asset payoff ai 15
Volatility of idiosyncratic shocks σ2

i 0.55
Volatility of noise shocks σ2

x 0.5
Risk-free rate r 1
Initial wealth w0 220

Baseline Learning α 0.001
# idiosyncratic assets n 8

Coef. of risk aversion (low) ρ 0.1
Coef. of risk aversion (high) ρ 0.35

Vol. of systematic shocks (low) σ2
n 0.2

Vol. of systematic shocks (high) σ2
n 0.5

Total supply of idiosyncratic assets x 20

Table 3: Baseline Parameters.

I study four different scenarios based on lower/higher risk aversion, and lower/higher

systematic risk. In this economy, increasing the share of agents who become informed (or

decreasing the cost of becoming informed), and decreasing risk aversion have similar effects.

This is because both of these changes are effectively increasing the risk-bearing capacity of

the economy. See Appendix Section A.6 for more details on the exact relationship between

the share of informed and risk aversion.

3.2 Effect of Introducing the ETF

Share informed

I want to understand how introducing the ETF affects the share of agents who decide to

become informed. Figure 4 shows the relationship between the cost of becoming informed

(in dollars) and the percent of rational investors who decide to become informed. When risk

aversion ρ is low, systematic risk σ2
n is low, and the cost of becoming informed is not too low,

more investors become informed after introducing the ETF. With these parameters, investors

are willing to bet aggressively on their private signals, increasing the benefit of becoming
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informed. As we increase risk-aversion, however, for most costs of becoming informed, more

investors learn when the ETF is not present. This is because for these parameter choices,

introducing the ETF makes the uninformed investors relatively better off.

Figure 4: Effect of introducing the ETF on learning. In these plots, the x-Axis is the
cost in dollars of becoming informed. The y-axis reports the share of agents who become
informed in equilibrium at this cost. In the panels, ρ represents risk aversion, and σ represents
the volatility of the systematic risk-factor i.e. σ2

n.

Hedging Demand

One of the effects of introducing the ETF is that it allows informed investors to better isolate

bets on signals about individual stocks. In the demand function, G1 is a measure of how

informed investors react to their own signals. Table 4 contains selected the entries of G1.

In the table, I fix the share informed at 50% to avoid mixing the effects of changing the
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share of informed agents and heding demand. When the share of informed agents changes,

all agent’s posterior precision matrices change as well, and this matters for how aggressive

agents are in betting on any signals.

Because all the stocks have the same supply and have the same ex-ante risk, when the ETF

is not present, G1 is a symmetric matrix. The diagonal entries show how strongly investors

react to signals about a particular asset. The off-diagonal entries show how investors may

hedge such bets. The “No ETF” columns look at those entries of G1. When an investor gets

a good signal about a particular asset, they buy more of it. They hedge this position by

shorting some of each of the other assets. For example in row 1, a 1 unit higher signal leads

to 0.968 units more of that asset, and that is hedged by shorting -0.117 of each of the other

7 assets. Note that the investors does not fully hedge out systematic risk, as 0.968 is greater

than 7 times -0.117 (recall that each stock has a unit loading on the systematic risk factor).

One reason for this is because investors are getting a combined signal on the systematic and

idiosyncratic components of the stock payoffs.

Compare this to the case with the ETF: The informed investor bets more aggressively

on the stock for low values of risk aversion/systematic risk. But, in all cases, they hedge out

all systematic risk with the ETF.

This result is not unique to how informed investors respond to their own signals. Both

informed and uninformed investors change their behavior in response to the signal contained

in prices. For details, see Appendix A.3.

Attention Allocation

Another key prediction of the model is that introducing the ETF affects attention allocation.

As shown above, introducing the ETF can change the share of agents who decide to become

informed, which makes it difficult to isolate the effect of attention re-allocation. In this sub-
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No ETF ETF
ρ σ2

f Shr. Inf. Gi,i Gi,j 7×Gi,j Gi,i Gi,j

0.1 0.2 0.5 0.968 -0.117 -0.817 1.260 -1.260
0.1 0.5 0.5 0.766 -0.069 -0.484 1.010 -1.010
0.25 0.2 0.5 0.290 -0.024 -0.171 0.274 -0.274
0.25 0.5 0.5 0.255 -0.019 -0.130 0.124 -0.124
0.35 0.2 0.5 0.189 -0.014 -0.100 0.046 -0.046
0.35 0.5 0.5 0.176 -0.012 -0.086 0.003 -0.003

Table 4: Hedging Demand. The share of informed agents are fixed and 50%. The “No
ETF” columns are the entries of G1 when the ETF is not present, while the “ETF” column
is the entries of G1 after introducing the ETF. The share of informed agents are fixed and
50%. There are 8 assets in the economy, so 7 × Gi,j is the total hedging of systematic risk
when betting on a stock-specific signal when the ETF is not present.

section, I fix the share of agents who decide to become informed, and look at intensive-margin

learning effects.

Figure 5 shows the relationship between the share of agents who decide to become in-

formed, and the share of attention allocated to systematic risk. When risk aversion is low,

and systematic risk is low, introducing the ETF actually decreases learning about systematic

risk. This is related to the hedging demand channel discussed above. Investors are willing

to bet aggressively on their private signals, and can hedge out all systematic risk through

an offsetting position of the same size in the ETF. As we increase systematic risk, the ef-

fect of introducing the ETF depends on the cost of becoming informed. Once risk aversion,

systematic risk, or the share of investors learning is sufficiently high, introducing the ETF

almost universally increases attention on systematic risk.

This illustrates a key trade-off for informed investors in the model: diversification vs.
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Figure 5: Effect of Introducing the ETF on Attention Allocation (fixed share
informed). In these plots, the x-Axis is the the share of agents who become informed. The
y-Axis is the share of agents attention devoted to systematic risk. All residual attention is
allocated to stock-specific risks. In the panels, ρ represents risk aversion, and σ represents
the volatility of the systematic risk-factor i.e. σ2

n.

trading profits. If agents are risk averse, they generally care more about systematic risk

because idiosyncratic risk can be diversified away. When we give them the ETF to trade

on systematic risk directly, they want to learn even more about this economy-wide risk. If

agents are closer to risk neutral they care more about profits than risk. When you give them

the ETF, it lets them take more targeted bets on volatile individual securities, and they

learn more about the stocks.

Risk Premia

If we fix the share of agents who become informed in equilibrium, introducing the ETF
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almost always decreases expected returns in the economy. This is not surprising, as the ETF

increases the information in the economy i.e. it adds an (n+ 1)th public signal, the price of

the ETF. Table 5 shows that introducing the ETF decreases average asset returns, as long as

risk aversion and the volatility of systematic risk are not too high. Once we allow the share

of informed agents to vary, however, risk premia can actually increase. This is because as

the number of informed agents in the economy decreases, the effective risk-bearing capacity

of the economy decreases, so risk premia must increase.

I view this risk premia as more of a modeling artifact than a testable prediction, and

want to take out this effect when studying price informativeness. To do this, I work with

market-adjusted returns: I calculate the returns of each asset as the actual return, minus the

market returns, as discussed in Campbell, Lettau, Malkiel, and Xu [2001]. Market-adjusted

returns are also used for all the empirical exercises in Sammon [2020a]. Whether or not the

ETF is present, the market is defined as the average return of all the stocks, to ensure an

apples-to-apples comparison12.

3.3 Sensitivity to Parameter Choice

So far, I have focused on the four baseline parameter choices. In this sub-section, I want to

examine how sensitive the model is to varying risk aversion and systematic risk.

In Figure 6 I fix the share of agents who decide to become informed at 20% (the baseline

choice in Kacperczyk et al. [2016]), and look at the effect on learning about systematic risk.

As risk aversion increases, learning about systematic risk increases. This is because as risk

aversion increases, the agents’ diversification motive starts to dominate their profit motive.

The relationship is steeper in the economy with the ETF and when the volatility of the

12The results are unaffected if you define the market as the return of the ETF when it is present.
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Panel A: Fix Share Informed

Risk Premium
ρ σ2

f Shr. Inf. No ETF ETF Change(PP)

0.1 0.2 0.1 3.73% 3.71% -0.02%
0.1 0.2 0.3 3.71% 3.59% -0.12%
0.1 0.5 0.1 8.18% 8.19% 0.01%
0.1 0.5 0.3 8.09% 8.05% -0.04%
0.35 0.2 0.1 14.33% 14.32% -0.01%
0.35 0.2 0.3 14.28% 14.23% -0.05%
0.35 0.5 0.1 35.98% 36.09% 0.11%
0.35 0.5 0.3 35.65% 35.94% 0.30%

Panel B: Fix Cost of Becoming Informed

Risk Premium
ρ σ2

f No ETF ETF Change(PP)

0.1 0.2 3.68% 3.38% -0.30%
0.1 0.5 7.98% 8.19% 0.21%
0.35 0.2 14.23% 14.23% 0.00%
0.35 0.5 35.32% 35.94% 0.63%

Table 5: Effect of introducing the ETF on Expected Returns. In Panel A, the share
informed is the same whether the ETF is present or not. In Panel B, the share informed
when the ETF is not present is set to 50%. After introducing the ETF, the share informed
are 0.55, 0.2, 0.3 and 0.3 in rows 1-4. The risk premium is defined as the average stock
return between period 0 and period 2.
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systematic risk factor is high.

Figure 6: Relationship between risk aversion and attention to systematic risk-
factor. In the left panel, σ2

n is set to 0.2, while in the right panel, σ2
n is set to 0.5

In Figure 7, I again fix the share of informed agents at 20% and vary σ2
n. As expected,

increasing systematic risk leads to increased learning about systematic risk. The effect is

steeper when risk aversion is high and when the ETF is present.

3.4 Discussion

There are two main effects of introducing the ETF: (1) A re-allocation of attention, when we

fix the share of agents who become informed in equilibrium, which I will call the intensive

margin (2) A change in the share of agents who become informed, which I will call the
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Figure 7: Relationship between systematic risk and attention to systematic risk-
factor. In the left panel, risk aversion, ρ is set to 0.1, while in the right panel, risk aversion
is set to 0.25.

extensive margin. Table 6 contains a summary of the intensive and extensive margin effects

for my baseline parameter choices. These tables show that introducing the ETF has an

ambiguous effect on both the intensive and extensive margins.

It is hard to take such ambiguous predictions to the data. Further, it is difficult to

observe empirically which risks investors are learning about. In the next section, I will

develop measures of price informativeness that are easier to take to the data.
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Panel A: Intensive Margin

Attention Allocation
Share No ETF ETF

ρ σ2
f Informed Idio. Sys. Idio. Sys.

0.1 0.2 0.5 86.0% 14.0% 100.0% 0.0%
0.1 0.5 0.5 66.0% 34.0% 80.0% 20.0%
0.35 0.2 0.5 56.0% 44.0% 12.0% 88.0%
0.35 0.5 0.5 52.0% 48.0% 0.0% 100.0%

Panel B: Extensive Margin

Attention Allocation
Share Informed No ETF ETF

ρ σ2
f No ETF ETF Idio. Sys. Idio. Sys.

0.1 0.2 0.5 0.55 78.0% 22.0% 100.0% 0.0%
0.1 0.5 0.5 0.2 58.0% 42.0% 56.0% 44.0%
0.35 0.2 0.5 0.3 44.0% 56.0% 0.0% 100.0%
0.35 0.5 0.5 0.3 36.0% 64.0% 0.0% 100.0%

Table 6: Intensive and Extensive Margin Effects of Introducing the ETF.

4 Price Informativeness

In this section, I explore the model’s predictions for introducing an ETF on pre-earnings

announcement price informativeness. To map the model to the empirical exercises in Sam-

mon [2020a], I define t = 1 as the pre-earnings date, and t = 2 as the earnings date. The

natural next step is to calculate a model-based measures of price-informativeness that could

tell us something directly about the information content of prices. The issue is that these

model-based measure of price informativeness are hard to measure in practice, and there is

much debate about the “right” way to do this13.

13For example, Grossman and Stiglitz [1980] defines price informativeness as a conditional covariance,
which requires identifying the ‘right’ set of conditioning variables. Academic economists, still disagree on
the right set of conditioning variables and whether this is the right definition of price informativeness. Bai,
Philippon, and Savov [2016] measure price informativeness as the variance of fundamentals, conditional on
prices. Dávila and Parlatore [2019] measure price informativeness as the variance of prices, conditional on
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For this reason, I want to focus on the three model-free measures of price informativeness

discussed in Sammon [2020b]. I create model analogues of these objects, and simulate the

economy to determine the effect of introducing the ETF on these measures.

4.1 Defining Price Informativeness Measures

Pre-Earnings Volume

Although we are assuming a continuum of investors, when running the simulations, there are

a finite number of traders, which I set to 10,000. Assume that at t = 0 all of the investors

are endowed with 1/10, 000th of x. Then we can think of trading volume as the difference

between agents’ initial holdings, and their holdings after submitting their demand at t = 1.

This measure, however, would be contaminated by the effect of the noise shock, so I want to

compute a measure similar to turnover. The measure of trading volume I use is the difference

between initial holdings and final holdings, divided by the total supply of the asset, which

includes the supply shock. I then take a weighted-average of this measure across informed

an uninformed investors.

For now, I am going to focus on trading in the individual stocks. There are two main

factors that affect trading volume in the model: (1) The share of investors who decide to

become informed. As more investors become informed, there are more different signals in the

economy, and thus more trading. Uninformed investors all submit the same demand, so in

the limit with all uninformed investors, there would be no trading volume after accounting

for the noise shock (2) Attention allocation. As more attention is devoted to the individual

stocks, informed investors have more precise posterior beliefs, and are more willing to bet

aggressively on their signals. We know that introducing the ETF both decreases incentives

fundamentals; effectively switching the left-hand-side and right-hand-side variables of a regression.
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to become informed, and shifts attention toward the systematic risk-factor, so my prior is

that it should decrease trading volume.

Pre-Earnings Drift

Define the pre-earnings drift:

DM =


1+r(0,1)
1+r(0,2)

if r2 > 0

1+r(0,2)
1+r(0,1)

if r2 < 0

(23)

where r(0,t) is the cumulative market-adjusted return from 0 to t. The pre-earnings drift

will be near one when the return at t = 2 is small relative to the return at t = 1. DMi,t

will be less than one when the t = 2 return is large, relative to the returns at t = 1. If

r2 is negative, this relationship would be reversed, which is why the measure is inverted

when r2 is less than zero14. To compute this measure, I save the prices at t = 015, t = 1

(calculated using the equilibrium in Admati [1985]), t = 2 (terminal payoffs), and compute

returns as r(t−n,t) = pt−pt−n

pt−n
and rt = pt−pt−1

pt−1
. The pre-earnings drift measure would clearly

be influenced by the risk premium channel, which is another reason why I work exclusively

with market-adjusted returns.

Share of Volatility on Earnings Days

Define the share of volatility on earnings days as r22/ (r21 + r22). If prices are not informative

before earnings announcements, we would expect earnings day volatility to be large, relative

to total volatility. Note that this is not sensitive to using squared returns i.e. focusing on

extreme observations – I find similar results working with absolute returns.

14This is similar to the price jump ratio in Weller [2017], but can be computed for all stocks. Weller has
to filter out over 50% of earnings announcements because the denominator of his measure can be close to
zero.

15The price at t = 0 is the price at the expected values of z and x i.e. prices if x = 0 and z = 0.
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4.2 Introducing the ETF

We know that introducing the ETF changes the share of investors who become informed.

To make the two settings comparable, I do the following: Calculate the cost in dollars

of becoming informed such that in the world without the ETF, 50% of investors become

informed in equilibrium. Then, find the closest cost of being informed on the grid for the

world the ETF (This is the same exercise that I’m doing in Table 6). Table 7 contains the

results for the price informativeness measures.

In the first scenario (green highlight), introducing the ETF increases per-earnings trading

volume, increases the pre-earnings drift and decreases the share of volatility on earnings days.

For these parameters, introducing the ETF seems to have made pre-earnings prices more

informative. In the 2nd, 3rd and 4th scenarios (blue highlight), the ETF makes prices less

informative across all measures. This decrease in pre-earnings price informativeness is likely

due to a combination of two effects: (1) a decrease in the share of agents learning and (2)

attention re-allocation away from stock-specific risks.

4.3 Relationship to Empirical Results

Sammon [2020a] finds that increasing passive ownership leads to (1) decreased pre-earnings

trading volume (2) decreased pre-earnings drift (3) increased share of volatility on earnings

days16. If we equate introducing an ETF in the model to the increases in passive ownership

in the data, then we can compare the empirical results to the model’s predictions. To this

end, I do a calibration of the model, where I search over all possible values of (1) the share

of informed agents when the ETF is not present (2) risk aversion (3) the volatility of the

systematic risk factor. I select parameters to match the decrease in volume, decrease in drift,

16All results in Sammon [2020a] are robust to defining passive ownership only as ETFs.
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ρ σ2f No ETF ETF Change

Volume

0.1 0.2 1.4377 1.7168 0.2791
0.1 0.5 1.4387 0.6964 -0.7423
0.35 0.2 0.4192 0.3026 -0.1166
0.35 0.5 0.4216 0.3026 -0.1191

Drift

0.1 0.2 96.82% 96.98% 0.16%
0.1 0.5 96.70% 96.24% -0.45%
0.35 0.2 95.92% 95.88% -0.04%
0.35 0.5 95.22% 95.14% -0.08%

Volatility

0.1 0.2 60.38% 56.89% -3.48%
0.1 0.5 60.46% 76.18% 15.72%
0.35 0.2 74.70% 78.01% 3.32%
0.35 0.5 75.24% 78.43% 3.19%

Table 7: Effect of ETF on Price Informativeness, Matching Cost of Becoming
Informed Across Economies. The cost of becoming informed is set such that 50% of
agents become informed before introducing the ETF.

and increase in volatility after a firm is added to the S&P 500 index. Specifically, I have the

following objective function:

min
|driftmodel − driftdata|

|driftdata|
+
|volumemodel − volumedata|

|volumedata|
+
|volatilitymodel − volatilitydata|

|volatilitydata|
(24)

The empirical estimates I am trying to match are from the following regression:

∆Outcomei,t = α + β × Treatedi,t + γt + εi,t (25)

where Outcome is pre-earnings volume, pre-earnings drift, or share of volatility on earnings

days. The ∆ denotes the change from before to after index addition. Treated equals 1 if a

firm was added to the index, and is equal to zero if it is one of the control firms: firms in

the same industry, and of similar size which are either (1) not in the index (2) already in the
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Treated vs. In/Out of Index
Volume Drift Volatility

Treated -0.813** -0.00534** 0.0179**
(0.369) (0.002) (0.007)

Model -0.075 -0.0001 0.019

Table 8: S&P 500 Index Addition. Model predictions use calibrated parameters: Cost
of becoming informed is set so 90% learn in equilibrium when the ETF is not present, and
70% learn when the ETF is present. ρ = 0.3, σ2

f=0.15. Regressions include month of index
addition fixed effects.

index. The regression also includes month of index addition fixed effects γt (for full details

of the S&P 500 index addition experiment, see Sammon [2020a]).

The results are in Table 8. The calibration is such that: (1) the cost of becoming informed

is set so 90% learn in equilibrium when the ETF is not present. At this c 70% learn when

the ETF is present (2) ρ = 0.3 and (3) σ2
f=0.15.

The model is fairly close on matching the increase in volatility, is off by about a factor of

10 for matching the volume, and only gets the sign of the change in the drift correct. We can

better match the data by increasing σ2
n to values near 0.4, but empirically, we did not observe

the market to be almost as volatile as individual stocks between 1990 and 2018. Increasing

σ2
n would also allow for a decrease in the share of agents who become informed when the

ETF is not present to 50%, and the share who become informed after the introduction of

the ETF to 40%.

While the model is consistent with the data, this is not the perfect comparison. Being

added to an index, and having an increase in passive ownership (data), is clearly different

from introducing an ETF, which effectively completes the market (model). In the next sub-

section, I propose a new empirical exercise which is closer to the model effect of introducing

an ETF.
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4.4 The Introduction of Sector ETFs

In the model, the ETF has two main effects on informed investors’ trading: (1) it makes

it easier to make bets on the systematic risk-factor and (2) it makes it easier to hedge

systematic risk when betting on individual stocks. In this section, I propose a natural

experiment designed to mimic the introduction of an ETF in the model.

4.4.1 History of Sector ETFs

Sector ETFs are ETFs that track specific industries, rather than the market as a whole.

While there are many sector ETFs, the most well known are State Street’s Sector SPDR

Funds. Table 9 contains a list of the all the sector SPDRs. These funds were introduced in

waves: The first set was introduced in 1999. The second wave, which were all sub-sects of

the S&P 500 were introduced in 2005 and 2006. The third wave, also subsets of the S&P

500 was introduced in 2011, while the final few were introduced in 2015 and later. As of

June 2020 there is over $170 Billion invested in these products.

4.4.2 Empirical Design

The introduction of sector ETFs seems likely to capture some of the features of introducing

the ETF in the model. These are low fee products (expense ratios less than 50 basis points),

so they make it easier to trade on systematic risk. These are also heavily used by hedge

funds to short/hedge sector risks. According to Goldman Sachs Hedge Fund Monitor (2016),

hedge funds are net short XRT, XLY, XBI, XOP, XLI, XLF, XLV, XLU and XLE – and

this is only among sector ETFs they explicitly listed in their report. Further, these net short

positions are not due to small long positions. For example, in XLF (the Financial Select

Sector SPDR), hedge funds have net $712 million long and $2.4 billion short. The large
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Name Ticker Founded Expense
Ratio

NAV AUM

The Consumer Discretionary Select Sector Fund XLY 3/31/1999 0.13% $132.26 $14,012.89 M
The Consumer Staples Select Sector Fund XLP 3/31/1999 0.13% $60.54 $14,241.29 M

The Energy Select Sector Fund XLE 3/31/1999 0.13% $45.09 $12,164.02 M
The Financial Select Sector Fund XLF 3/31/1999 0.13% $26.16 $21,849.83 M

The Health Care Select Sector Fund XLV 3/31/1999 0.13% $102.82 $26,580.85 M
The Industrial Select Sector Fund XLI 3/31/1999 0.13% $74.39 $10,293.96 M
The Materials Select Sector Fund XLB 3/31/1999 0.13% $59.18 $5,209.07 M

The Technology Select Sector Fund XLK 3/31/1999 0.13% $102.42 $30,947.40 M
The Utilities Select Sector Fund XLU 3/31/1999 0.13% $61.55 $11,819.93 M

Bank ETF KBE 12/30/2005 0.35% $36.90 $1,666.27 M
Capital Markets ETF KCE 12/30/2005 0.35% $59.82 $25.42 M

Insurance ETF KIE 12/30/2005 0.35% $30.36 $629.94 M
Biotech ETF XBI 3/31/2006 0.35% $104.56 $4,577.23 M

Homebuilders ETF XHB 3/31/2006 0.35% $45.13 $857.47 M
Semiconductor ETF XSD 3/31/2006 0.35% $115.13 $518.10 M

Metals & Mining ETF XME 6/30/2006 0.35% $23.39 $457.38 M
Oil & Gas Equipment & Services ETF XES 6/30/2006 0.35% $43.91 $121.41 M

Oil & Gas Exploration & Production ETF XOP 6/30/2006 0.35% $66.61 $2,337.89 M
Pharmaceuticals ETF XPH 6/30/2006 0.35% $43.79 $249.63 M

Regional Banking ETF KRE 6/30/2006 0.35% $44.87 $1,503.21 M
Retail ETF XRT 6/30/2006 0.35% $44.21 $362.53 M

Health Care Equipment ETF XHE 3/31/2011 0.35% $88.00 $521.40 M
Telecom ETF XTL 3/31/2011 0.35% $73.55 $53.32 M

Transportation ETF XTN 3/31/2011 0.35% $57.37 $174.97 M
Aerospace & Defense ETF XAR 9/30/2011 0.35% $98.20 $1,571.20 M
Health Care Services ETF XHS 9/30/2011 0.35% $71.93 $90.64 M
Software & Services ETF XSW 9/30/2011 0.35% $110.64 $236.77 M

The Real Estate Select Sector Fund XLRE 12/31/2015 0.13% $37.43 $4,641.12 M
Internet ETF XWEB 6/30/2016 0.35% $98.83 $21.74 M

The Communication Services Select Sector Fund XLC 6/29/2018 0.13% $56.41 $9,803.64 M

Table 9: List of Sector SPDR ETFs. The expense ratio, Net Asset Value per share
(NAV) and Assets Under Management (AUM) are as of 6/9/2020.
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short interest in many ETFs by hedge funds may be due to the relatively low borrowing

cost. According to Deutsche Bank, shorting SPY (the largest S&P 500 ETF) usually costs

about 40 basis points, while shorting something riskier like the US consumer staples sector

ETF (XLP) can run up to 72 basis points.

Given these features of sector ETFs, they seem like a reasonable empirical analogue to

the introduction of ETFs in the model. With that in mind, I examine the effect of the

introduction of the original set of sector ETFs in 1999. There are three groups of firms to

compare (1) firms which were in the ETFs (2) firms in the same sector as the ETF, but were

not part of the ETF basket (3) firms in sectors without ETFs.

I found that the firms which were added to the sector ETFs were mostly firms in the

largest 20% of each industry. To construct a better control group I split firms up into

quintiles of market capitalization by industry. The two groups of treated firms are (1) those

in the ETF (2) those in the same 3-digit SIC industry as firms in the ETF and in the top

20% of market capitalization for these industries, but not in the ETF. The control group is

going to be firms in 3-digit SIC industries that do not have sector ETFs, but are still in the

top 20% of market capitalization for their own industry.

The empirical estimates I am trying to match are from the following regression:

Outcomei,t = α + β × Treatedi,t × Postt + γt + εi,t (26)

where Outcome is pre-earnings volume, pre-earnings drift, or share of volatility on earnings

days. Postt = 1 for all year/quarters after the first quarter of 1999. I omit the second

quarter of 1999 for the volume/drift regressions (which use quarterly data) in case of a

temporary liquidity shock to these stocks as the result of the ETFs being introduced. For

44



the volatility regression (which uses annual data), I omit all of 1999 for the same reason.

Treated equals 1 if a firm was in one of the ETFs, or in a sector with an ETF. It is equal to

zero otherwise. The regression also includes time fixed effects, γt, and there is no uninteracted

Postt term because of these time fixed effects. Observations are weighted by lagged market

capitalization. Standard errors are clustered at the firm-level.

4.4.3 Empirical Results

Table 10 contains the regression results. After the introduction of sector ETFs, the treated

firms had a decrease in pre-earnings volume, a decrease in pre-earnings drift, and an increase

in the share of annual volatility on earnings days. The effect is slightly stronger among

the treated firms that were members of the new sector ETFs17. This is consistent with

the sector ETFs decreasing stock-level price informativeness. A calibration is in the row

below the regression results. The calibrated parameters are: (1) informed share before ETF

introduction at 90%, after ETF introduction 70% (2) Risk aversion (ρ) at 0.15, and (3)

volatility of systematic risk (σ2
n) at 0.3.

The calibration is able to quantitatively match the changes in volume and volatility, but

can only qualitatively match the results for the pre-earnings drift. Part of this is due to the

fact that in the data, I am using returns over 22 trading days to construct the drift, while in

the model, there is only 1 day before the earnings announcement. The concept of information

being slowly incorporated into prices might be better suited to a Kyle [1985]-style model,

than the model in this paper.

17See Figure 16 in the Appendix for a visual version of these regressions.
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Volume Drift Volatility

Treated× Post -0.0776 -0.00715** 0.0128*
(0.435) (0.003) (0.008)

Model -0.0881 -0.00006 0.0112

In ETFs 343 343 343
In ETF Sectors 3316 3316 3316

Outside ETF Sectors 866 866 866

Time FE YES YES YES

Table 10: Effect of Introducing Sector ETFs. Coefficients from: Outcomei,t = α +
β × Treatedi,t×Postt + γt + εi,t Observations are weighted by lagged market capitalization.
Standard errors, clustered at the firm level, in parenthesis.

5 Varying the Size of ETF Ownership

Up to this point, the ETF has been in zero average supply, similar to a futures contract.

This means that if an investor wants to go long the ETF, there needs to be another investor

taking an exactly offsetting short position in the ETF. Unlike futures contracts, however,

almost all ETFs are in positive supply: few have short interest equal to 100% or more of

their AUM18. The mechanism for this is that investors can take a pre-specified basket of

underlying securities and give them to an ETF custodian in exchange for shares of the ETF.

These shares of the ETF then trade on the secondary market.

This is an important feature to capture when mapping the model’s predictions to the

empirical results in Sammon [2020a]. In the data, passive ownership is measured as the

percent of each company’s shares outstanding owned by passive funds. In this section, I

will extend the model, allowing an intermediary to buy shares of the underlying stocks and

convert them into shares of the ETF.

18See e.g. data here on the most shorted ETFs, as of 8/1/2020 only 3 ETFs have short interest greater
than or equal to 100%.
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5.1 Setup

As outlined above, I introduce a new player who can buy shares of the underlying stocks,

and convert them into shares of the ETF. I am going to assume that, unlike the atomistic

informed and uninformed investors, this intermediary is strategic: she understands that to

create more shares of the ETF, she will have to buy more shares of the stocks, which will

push up their expected prices. I emphasize expected because she still takes prices at t = 1

as given i.e. there is no price impact at t = 1. She does, however, account for changes in

expected prices given her behavior.

I am also going to assume that she has to submit a market order at t = 0 i.e. she will

have to decide how many shares of the ETF to create without knowing the t = 1 prices of

any security. I discuss these two assumptions (strategic intermediary, submitting a market

order) in the next subsection.

Her objective function is the same as the objective function for the informed and unin-

formed investors:

U0,j = E0

[
E1,j[w2,j]− 0.5ρiV ar1,j[w2,j]

]
(27)

where ρi is the intermediary’s risk aversion. I assume that because the stocks are symmetric,

she must demand the same amount of each stock. If she buys v shares of every stock, this

would take v× n units of systematic risk out of the economy. To ensure that the amount of

systematic risk in the economy is constant, I assume this allows her to create v×n shares of

the ETF. These assumptions imply that her only decision is how many shares of each stock

to buy (v).
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With this technology, the intermediary’s payoff will be:

v

(
n∑
i=1

(zi − pi)− n(zn+1 − pn+1)

)
(28)

which is the average difference between the stocks’ payoffs and their prices minus the dif-

ference between the ETF’s payoff and its price, scaled by how many shares she creates. To

create the ETF, she is essentially stripping out the idiosyncratic risk from an equal-weighted

basket of the stocks, and bearing it herself. She sells the systematic risk from this basket to

other investors.

This ETF creation technology does not exactly match the real world. ETF arbitrageurs

don’t hold on to the shares of the stocks they buy to create shares of the ETFs – they

transfer them to an ETF custodian (e.g. State Street for the largest S&P 500 ETF SPY)19.

This could be modeled by having the intermediary transfer the stocks she buys at t = 1 to

another (new) agent, an ETF custodian, who gives her shares of the ETF, which she sells

immediately at t = 1. With this setup, the intermediary would have no asset holdings at

t = 2.

I find that with these alternative assumptions, all the qualitative results are unchanged.

The quantitative difference is that creating shares of the ETF is less risky, so in equilibrium,

the intermediary makes the ETF larger. This is because in this scenario, the intermediary

is only exposed to risk on her market order i.e. that the average prices of the stocks is

higher than the price of the ETF due to positive realizations of stock-specific risk-factors or

negative realizations of the stock-specific noise trader shocks. The reason I do not use this

19For ETFs with many underlying securities, all idiosyncratic risk should be diversified away. For example,
when creating shares of an S&P 500 ETF, there are 500 sources of idiosyncratic risk, substantially more
than the 8 stocks in the baseline version of my model. The issue is that without transaction costs, if there
are a large number of underlying assets, there would be no motivation to create the ETF in the first place.
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alternative setup as the main specification is because with this ETF creation technology, the

intermediary would be able to remove idiosyncratic risk from the economy by creating more

shares of the ETF.

I solve for the optimal v numerically using the following procedure. First, I restrict v to be

greater than or equal to zero. This almost never binds, but as mentioned in the introduction

of this section, almost all ETFs are in positive supply. Then, I loop over all possible values

of v between 0 and x, and select the v which maximizes the intermediary’s expected utility.

The expectations in Equation 27 are computed by simulating 10,000 draws of the z and x

shocks for each possible choice of v.

Having the intermediary submit a market order at t = 0 means that we can re-use

the equilibrium price and demand functions from Section 2. Because this is a rational

expectations equilibrium, all the agents know what v will be, given the model parameters.

The only difference is that informed and uninformed agents will treat the supply of each

stock as x− v and the supply of the ETF as n× v. The new model timeline is in Table 11.

The size of the ETF depends on the intermediary’s risk aversion, ρi. Figure 8 shows that

as the intermediary’s risk aversion increases, the number of shares of the ETF decreases.

The size of the ETF also depends on ρ, σn and the share of informed agents: if the risk-

bearing capacity of the economy is low, investors will generally be willing to pay a higher

price for the ETF, so the intermediary will create more shares. Figure 9 shows that as risk

aversion of informed and uninformed investors increases, the equilibrium size of the ETF

increases as well: The amount of the ETF created, as a function of ρi, shifts out to the right

as we increase ρ.
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t = 0 � • Agents make binary

decision to pay c and become

informed or stay uninformed.

• If informed, decide how to

allocate attention to the

underlying risks.

• Intermediary submits

market order to buy v

shares of the each stock.

t = 1 � • Intermediary’s market

order clears, leaving x− v
shares of each stock, and

v × n shares of the ETF

available for purchase

• Informed agents receive

private signals. Informed and

uninformed agents submit

demands

t = 2 � Payoffs realized, agents
consume

Table 11: New Model Timeline. Differences from original timeline in bold.
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Figure 8: Relationship between size of the ETF and the intermediary’s risk aver-
sion. The share of informed agents is set to 50%.

5.2 Discussion

In this sub-section, I discuss (1) why I assumed the intermediary is ‘strategic’ and (2) why I

assumed the intermediary submits a market order i.e. why her demand does not depend on

prices.

The main reason for the first assumption is that I want the intermediary to be differ-

ent from the informed/uninformed agents. Any of those agents could implement a trading

strategy where they buy shares of the underlying stocks, and sell shares of the ETF. When

risk aversion is low, informed investors will (collectively) implement a strategy like this.

Given that the group of investors (informed or uninformed) ‘creating’ shares of the ETF
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Figure 9: Relationship between the size of the ETF and informed/uninformed
investors’ risk avesrion. The share of informed agents is set to 50%, σn is set to 0.25.

(i.e. shorting the ETF when it is in zero average supply) is not always the same, it is not

obvious how to define passive ownership. With my assumptions about the ETF creation

process, passive ownership can be measured as the percent of shares of each stock purchased

by the intermediary. This has the added benefit of a clearer link to the definition of passive

ownership in Sammon [2020a].

A way to model non-strategic ETF creation would be to have a continuum of com-

petitive agents who can create shares of the ETF for a fixed cost (this cost maps to the

creation/redemption fee charged by ETF custodians). Because these agents are competitive,

in equilibrium the ETF creators will make zero economic profit, and so will be indifferent to

the number of shares they create. By making the ETF creator a monopolist I get a unique
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solution for the size of the ETF.

The second assumption is needed because of the first assumption. At t = 1, if the

intermediary could have her demand depend on prices, say through a simple linear rule,

there would be an interaction between a strategic agent (the intermediary) and atomistic

agents (informed and uninformed investors). On top of that, informed and uninformed

investors are learning from prices, while the intermediary, at least as she is defined now,

does not. Without additional assumptions, it’s not obvious that an equilibrium would exist.

5.3 Intensive and Extensive Margin Effects

Given the intensive/extensive margin effects of introducing the ETF were ambiguous, it

seems that increasing the size of the ETF could also have an ambiguous effect on (1) the

share of agents who become informed in equilibrium and (2) learning about the systematic

risk-factor. In this subsection, I show that increasing the size of the ETF uniformly decreases

the share of informed agents and uniformly increases learning about systematic risk, relative

to the case where the ETF is in zero average supply.

Figure 10 relates the share of informed agents to the cost of becoming informed in three

scenarios: (1) No ETF (blue diamonds) (2) ETF in zero net supply (red circles) and (3) ETF

in positive supply (green crosses). For all four panels, I fix σn at 0.25, and vary ρ. The top

right panel, when ρ = 0.15 and σn = 0.25, shows that there is an additional decrease in the

share of informed agents when the ETF is in positive supply. Because there are 2.5 shares

of each stock outstanding (20/8=2.5), and to create 8 shares of the ETF requires buying

1 share of each stock, passive ownership is 40% of the market (1/2.5=0.4). Note also that

as we increase ρ, the intermediary endogenously creates more shares of the ETF. Figure 11

fixes ρ at 0.25, and varies σn. Again, the top left two panels show the additional decrease in
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the share of informed agents, relative to the zero ETF supply case, when we allow the ETF

to be in positive supply.

Figure 10: Extensive Margin Effects (ρ). Relationship between cost of becoming in-
formed, and share of agents who become informed in equilibrium. The risk aversion of the
intermediary, ρi is equal to 1. Average # of Shares of ETF Created is taken across all costs
of being informed for each choice of ρ and σn

Figure 12 shows the intensive learning margin effect across these same three scenarios,

fixing σn at 0.25. All the panels, except the top left, show the additional increase in attention

on systematic risk when we allow the ETF to be in positive supply. Figure 13 shows the

effect of varying σn, fixing ρ at 0.25, where the same pattern is present.

The average size of the ETF is smaller in these cases, relative to the averages taken in

Figures 10 and 11. This is because I am taking the average over all shares of informed agents
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Figure 11: Extensive Margin Effects (σn). Relationship between cost of becoming in-
formed, and share of agents who become informed in equilibrium. The risk aversion of the
intermediary, ρi is equal to 1. Average # of Shares of ETF Created is taken across all costs
of being informed for each choice of ρ and σn

between 0.2 and 0.7. For the most part, the share of informed agents is around 0.2 when I

am matching economies on the cost of becoming informed. Higher shares of informed agents

implies that in these new averages, the risk bearing capacity of the economy is larger, which

implies less demand for the ETF as discussed above.

5.4 Effect on Price Informativeness

Figure 14 shows a calibration designed to match the empirical patterns in Sammon [2020a].

The vertical red line denotes the parameter set of interest. All three price informativeness
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Figure 12: Intensive Margin Effects (ρ). Relationship between share of informed agents,
and share of attention allocated to the systematic risk-factor. The risk aversion of the
intermediary, ρi is equal to 1. Average # of Shares of ETF Created is taken across all shares
of informed agents for each choice of ρ and σn.

measures decreases both as (1) we introduce the ETF in zero average supply and (2) as we

increase the size of passive ownership to be 12% of the market. This is chosen to match the

roughly 15% of the market owned by passive ownership, as documented in Sammon [2020a].

6 Conclusion

The introduction of ETFs has been one of the biggest changes in financial markets over the

past 30 years. Given that a main function of financial markets is to aggregate information, it

is important to know how their ability to perform this function changes as the landscape of
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Figure 13: Intensive Margin Effects (σn). Relationship between share of informed agents,
and share of attention allocated to the systematic risk-factor. The risk aversion of the
intermediary, ρi is equal to 1. Average # of Shares of ETF Created is taken across all shares
of informed agents for each choice of ρ and σn.

financial products changes. This paper focuses on the effect of introducing ETFs on learning,

which in turn leads to changes in price informativeness for individual stocks.

I find three main effects of introducing ETFs: (1) Changes in the share of agents who

decide to become informed (2) Changes in the attention of informed agents (3) Changes in

risk premia.

I find that effect of introducing the ETF on pre-earnings price informativeness is am-

biguous in the model, which is why empirical work is needed. Sammon [2020a] shows that

increases in passive ownership cause decreases in price informativeness. The paper also
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Figure 14: Calibration. Vertical red line is a calibration where passive ownership is 12%
of each stock.

shows direct evidence on decreased information gathering, through analyst coverage and

downloads of SEC filings. This is consistent with the model’s predictions when risk aversion,

or systematic risk are sufficiently high.

In this paper, I examine a new natural experiment to test the model’s predictions: the

introduction of sector ETFs. Empirically, stocks in sectors where the ETFs were introduced

had decreases in price informativeness. The changes in volume and volatility can be quan-

titatively matched in the model, while the results for the pre-earnings drift can only be

matched qualitatively. The calibration that matches the data features high risk aversion,

similar to matching the results in Sammon [2020a].

The model could be enriched by creating two groups of stocks: those that are in the
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ETF, and those whose systematic risk is spanned by the ETF, but are not part of the

basket. For this to have an effect on the model, there would have to be some way for agents

to convert shares of stock to the ETF and vice versa. This extension would yield more

testable predictions for the effect of introducing the ETF on the different “treated” groups

in the sector ETF experiment.
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A Appendix

A.1 Model where individual assets are not symmetric

Suppose each asset i now has the payoff:

zi = ai + βif + ηi (29)

where βi and var(ηi) is different for each asset. In this setting, informed agents’ choice is

not just a trade-off between learning about systematic and idiosyncratic risk. To solve for

information choice in this version of the model, I need to modify the numerical method:

1. Start all agents at K0

2. Consider an atomistic agent j who takes K0 as given, and considers their expected

utility by deviating to K1
j on a n× n dimensional grid around K0. Even though there

are (n+ 1) risks to learn about, we don’t need the (n+ 1)th dimension because of the

total information constraint.

3. Calculate the gradient numerically at K0 using this grid of expected deviation utilities.

Then, move j on the grid in the direction of the gradient.

4. If j’s expected utility increased, move all informed agents to K1
j

5. Iterate on steps 2-4 until j can no longer improve their expected utility by deviating.

This method works, and when the ETF is present, is able to match closed form solutions

from Kacperczyk et al. [2016]. For n > 3, however, this method can take an extremely

long time to find the solution. Given that heterogenous this does not drastically change
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pre-earnings volume, pre-earnings drift or earnings-day volatility, I focus on the symmetric

asset case in the main body of the paper.

A.2 Expected utility of informed and uninformed

Table 12 contains information on the percentage difference in expected utility between in-

formed and uninformed agents when the ETF is and is not present.

A.3 Sensitivity of Demand to Prices

This is also a type of hedging demand. Similar to the hedging from signals to informed

agents, investors also use prices as a signal, and thus may do a similar hedging. Table 13

fixes the cost of becoming informed. Table 14 fixes the share of agents becoming informed.

A.4 Expected Utility

In line with Kacperczyk et al. [2016], I define agents’ time 0 objective function as: −E0[ln(−U1,j)]/ρ

which simplifies to: U0 = E0 [E1,j[w2,j]− 0.5ρV ar1,j[w2,j]]. This simplification comes from

the fact that (1) w2,j is normally distributed, and (2) E[exp(ax)] = exp(aµx + 1
2
a2σ2

x) where

x is a normally distributed random variable with mean µx and standard deviation σx, and

a is a constant. This objective function leads to a preference for an early resolution of

uncertainty, relative to expected utility.

Too see how the log transformation, −E0[ln(−U1,j)]/ρ, induces a preference for an early

resolution of uncertainty relative to expected utility E0[U1,j], we can follow Veldkamp [2011]

and cast preferences as recursive utility (Epstein and Zin [1989]).
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Panel A: Matching Cost of Becoming Informed
Share Informed Diff. in EU

ρ σ2
n no ETF ETF no ETF ETF

0.1 0.2 0.05 0.2 0.154% 0.163%
0.1 0.5 0.35 0.2 0.181% 0.177%
0.25 0.2 0.5 0.2 0.229% 0.229%
0.25 0.5 0.5 0.2 0.572% 0.571%

Panel B: Share Informed at 10%
Share Informed Diff. in EU

ρ σ2
n no ETF ETF no ETF ETF

0.1 0.2 0.1 0.1 0.154% 0.177%
0.1 0.5 0.1 0.1 0.226% 0.186%
0.25 0.2 0.1 0.1 0.251% 0.296%
0.25 0.5 0.1 0.1 0.727% 1.103%

Panel C: Share Informed at 30%
Share Informed Diff. in EU

ρ σ2
n no ETF ETF no ETF ETF

0.1 0.2 0.3 0.3 0.132% 0.141%
0.1 0.5 0.3 0.3 0.190% 0.154%
0.25 0.2 0.3 0.3 0.237% 0.211%
0.25 0.5 0.3 0.3 0.650% 0.300%

Table 12: Effect of Introducing the ETF on Expected Utility of Informed and
Uninformed. This table quantifies the effect of introducing the ETF on the expected utility
of informed and uninformed agents. The columns of interest are under the header “Diff. in
EU”. The “no ETF” column is the % difference in expected utility between informed and
uninformed agents when the ETF is not present. The ETF column repeats this exercise
after introducing the ETF.
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Uninformed
Share Informed No ETF Present ETF Present

ρ σ2
n no ETF ETF Own Stock Hedge Own Stock Hedge ETF Hedge

0.1 0.2 0.05 0.2 6.333 -0.278 2.273 0.000 -2.273
0.1 0.5 0.35 0.2 1.764 -0.170 3.082 0.000 -3.082
0.25 0.2 0.5 0.2 2.380 -0.181 5.510 0.000 -5.510
0.25 0.5 0.5 0.2 2.550 -0.291 5.510 0.000 -5.510

Informed
Share Informed No ETF Present ETF Present

ρ σ2
n no ETF ETF Own Stock Hedge Own Stock Hedge ETF Hedge

0.1 0.2 0.1 0.2 7.872 -0.489 4.023 0.000 -4.023
0.1 0.5 0.35 0.2 2.865 -0.270 4.307 0.000 -4.307
0.25 0.2 0.5 0.2 2.803 -0.218 5.710 0.000 -5.710
0.25 0.5 0.5 0.2 2.913 -0.317 5.710 0.000 -5.710

Table 13: Sensitivity of Demand to Prices (fixed c). Entries of G2,inf and G2,un for
one of the stocks i.e. assets 1 to n−1. The cost of being informed is chosen such that 20% of
agents become informed when the ETF is present. The “Own” columns are diagonal entries
e.g. (1,1). The “Stock Hedge” column is one of the edge entries excluding the nth e.g. (1,2)
or (2,1). The “ETF Hedge” column is the nth edge entry.
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Panel A: Share Informed Fixed at 10%
Uninformed

Share Informed No ETF Present ETF Present
ρ σ2

n no ETF ETF Own Stock Hedge Own Stock Hedge ETF Hedge

0.1 0.2 0.1 0.1 4.096 -0.036 4.040 0.000 -4.040
0.1 0.5 0.1 0.1 4.899 -0.528 7.656 0.000 -7.656
0.25 0.2 0.1 0.1 4.884 -0.464 6.270 0.000 -6.270
0.25 0.5 0.1 0.1 4.976 -0.601 6.270 0.000 -6.270

Informed
Share Informed No ETF Present ETF Present

ρ σ2
n no ETF ETF Own Stock Hedge Own Stock Hedge ETF Hedge

0.1 0.2 0.1 0.1 5.597 -0.236 5.790 0.000 -5.790
0.1 0.5 0.1 0.1 5.979 -0.623 8.343 0.000 -8.343
0.25 0.2 0.1 0.1 5.299 -0.499 6.470 0.000 -6.470
0.25 0.5 0.1 0.1 5.331 -0.626 6.470 0.000 -6.470

Panel B: Share Informed Fixed at 30%
Uninformed

Share Informed No ETF Present ETF Present
ρ σ2

n no ETF ETF Own Stock Hedge Own Stock Hedge ETF Hedge

0.1 0.2 0.3 0.3 1.774 0.059 1.581 0.000 -1.581
0.1 0.5 0.3 0.3 2.020 -0.197 1.950 0.000 -1.950
0.25 0.2 0.3 0.3 3.190 -0.266 4.018 0.000 -4.018
0.25 0.5 0.3 0.3 3.364 -0.393 4.914 0.000 -4.914

Informed
Share Informed No ETF Present ETF Present

ρ σ2
n no ETF ETF Own Stock Hedge Own Stock Hedge ETF Hedge

0.1 0.2 0.3 0.3 3.198 -0.117 3.331 0.000 -3.331
0.1 0.5 0.3 0.3 3.121 -0.296 3.337 0.000 -3.337
0.25 0.2 0.3 0.3 3.614 -0.303 4.356 0.000 -4.356
0.25 0.5 0.3 0.3 3.728 -0.419 5.114 0.000 -5.114

Table 14: Sensitivity of Demand to Prices (fixed share informed). Entries of G2,inf

and G2,un for one of the stocks i.e. assets 1 to n−1. In Panels A and B, the share of informed
agents are fixed and 10% and 30% respectively. The “Own” columns are diagonal entries
e.g. (1,1). The “Stock Hedge” column is one of the edge entries excluding the nth e.g. (1,2)
or (2,1). The “ETF Hedge” column is the nth edge entry.
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A.4.1 Formulation as Epstein-Zin Preferences I

Start by writing down the general formulation of Epstein-Zin preferences: Ut = [(1− β)cαt + βµt (Ut+1)
α]

1/α

where the elasticity of intertemporal substitution (EIS) is 1/(1− α) and µt is the certainty

equivalent (CE) operator. Note, the I’ve re-labeled what is usually ρ to α it to avoid confusion

with the CARA risk aversion at time 1.

In my setting, all consumption happens at time 2, so let’s simplify Ut from the perspective

of t = 0. To further simplify things, set β = 1. Choose the von Neumann-Morgenstern utility

index u(w) = −exp(−ρw) i.e. the CARA utility at time 1. We can then define the certainty

equivalent operator µt(Ut+1) = Et [−ln(−Ut+1)/ρ]. This µt is just the inverse function of the

von Neumann-Morgenstern utility index. It makes sense to call this a certainty equivalent

operator because it returns the amount of dollars for sure that would yield the same utility

as the risky investment. Recall that U1,j = E1,j[−exp(−ρw2,j)] and wealth is normally

distributed so U1,j = −exp(−ρE1,j[w2,j] + 0.5ρ2V ar1,j[w2,j])

Starting with setting β = 0 and c1 = 0: U0 = [µ0 (U1)
α]

1/α

Substituting in the expression for the CE operator: U0 = [E0 [−ln(−U1)/ρ]α]
1/α

Putting in our expression for U1: U0 =
[
E0 [−ln(exp(−ρE1,j[w2,j] + 0.5ρ2V ar1,j[w2,j]))/ρ]

α]1/α
Simplifying: U0 = [E0 [(E1,j[w2,j]− 0.5ρV ar1,j[w2,j])]

α]
1/α

Setting α = 1 i.e. an infinite EIS: U0 = E0 [(E1,j[w2,j]− 0.5ρV ar1,j[w2,j])]

which matches Equation 6 in Kacperczyk et al. [2016]. This shows that we can derive

their utility function from Epstein-Zin preferences, but does make it totally clear what this

transformation has to do with an early vs. late resolution of uncertainty.
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A.4.2 Formulation as Epstein-Zin Preferences II

To make things clearer, let’s work with a more well-known version of Epstein-Zin preferences:

Vt =
(
(1− β)c1−ρt + β[Et(V

1−α
t+1 )](1−ρ)/(1−α)

)1/(1−ρ)
Setting t = 0, c0 = 0, c1 = 0, β = 1: V0 =

(
[E0(V

1−α
1 )](1−ρ)/(1−α)

)1/(1−ρ)
Notice that c1−α is a version of Constant Relative Risk Aversion (CRRA) utility. CRRA

utility simplifies to log utility if relative risk aversion is equal to 1. So, with this in mind,

set α = 1: V0 =
(
exp[E0(ln[V1])]

(1−ρ))1/(1−ρ)
Set ρ = 0 (i.e. infinite EIS as we did above): V0 = exp[E0(ln[V1])]

This is equivalent to maximizing: V0 = E0(ln[V1]) because exp(x) is a monotone

function.

In my setting: V1 = E1[exp(−ρw)] i.e. time 1 utility times -1

So the final maximization problem is: V0 = −E0(ln[−V1])

With Epstein-Zin, there is a preference for an early resolution of uncertainty if α >

(1/EIS). As set up here, α = 1 and 1/EIS = 0, so agents have a preference for early

resolution of uncertainty. For expected utility, we would set α = 0, and then there would be

no preference for early resolution of uncertainty.

A.4.3 Implications for Informed Investors

As I said above, U0 = E0 [(E1,j[w2,j]− 0.5ρV ar1,j[w2,j])] introduces a preference for the early

resolution of uncertainty (see e.g. Veldkamp, 2011). There are two types of uncertainty

in the model: (1) uncertainty about payoffs at t = 2, conditional on signals at t = 1 (2)

uncertainty about portfolio you will hold at t = 1 from the perspective of t = 0. With these

preferences, agents are not averse to uncertainty resolved before time two i.e. are not averse

to the uncertainty about which portfolio they will hold.
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An intuitive way to see this is that increases in expected variance, E0 [V ar1,j[w2,j]), lin-

early decrease utility. With expected utility, −E0[E1[exp(−ρw)]], simplifies to−E0[exp (−ρE1,j[w2,j] + 0.5ρ2V ar1,j[w2,j])].

Because variance is always positive, utility is decreasing faster than linearly in expected vari-

ance.

A more nuanced argument requires a discussion of why learning about particular risks is

useful. Expected excess portfolio return achieved through learning depends on the covariance

between your portfolio q and asset payoffs f−p, cov(q, f−p). Specializing in learning about

one asset leads to a high covariance between payoffs and holdings of that asset. The actual

portfolio you end up holding, however, can deviate substantially from the time 0 expected

portfolio. Learning a little about every risk leads to smaller deviations between the realized

and time 0 expected portfolio, but also lowers cov(q, f − p).

With expected utility, investors are averse to time 1 portfolio uncertainty (i.e. risk

that signals will lead them to take aggressive bets), so do not like portfolios that deviate

substantially from E0 [q] The utility cost of higher uncertainty from specialization offsets the

utility benefit of higher portfolio returns, removing the ”planning benefit” experienced by

the mean-variance specification.

Recursive utility investors are not averse to risks resolved before time 2, so specialization

is a low-risk strategy. Lowers time 2 portfolio risk by loading portfolio heavily on an asset

whose payoff risk will be reduced by learning.

This also shows why it is desirable to introduce a preference for an early resolution of

uncertainty in endogenous learning models. Think about an investor who wants to learn

about AAPL. They do this so they can hold a lot of Apple (AAPL) when it does well, and

hold little AAPL when it does poorly. An expected utility investor would be hesitant to

learn too much about AAPL, because the fact that their portfolio will vary substantially
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depending on the signal they get seems risky to them.

A.5 Representation

We could re-write the payoffs as:

zi = ai + ηi (30)

i.e. with no systematic component, but instead of having the ηi be i.i.d., instead have them

correlated in a way that replicates the strcture of the payoffs.

[TBA]

A.6 Risk-Bearing Capacity of the Economy

[TBA]

A.7 Dynamic Model

[TBA]

A.8 Solving a Rotated Version of the Model

1. Guess an initial total attention for informed investors

2. Solve orthogonal model with this total attention constraint

3. Loop over possible attention choices in un-rotated model

4. See if optimal attention from rotated model matches the guess after rotation i.e. Σe =

GL∗G′ where GLG′ = Σe is the eigen-decomposition of the signal precision matrix and

L∗ is the optimal precision matrix in the rotated model
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5. Loop over all possible max attention allocations for the orthogonal model until it

matches desired total attention in the un-rotated model

Note, if assets are not independent need Σe = Σ1/2GL∗GΣ1/2, where Σ is the covariance

matrix of asset payoffs.

This happens when the solution to the rotated model proposes values for Ki which do

not satisfy the total information constraint. For example, suppose we have two assets and

three risks. Using the notation in the appendix of Kacperczyk et al. [2016]:

Define: Σ1/2 = Square root of V , the variance-covariance matrix of payoffs

Define: Σs = S, the variance-covariance matrix of signals

Define: Σ1
s = Σ−1/2 × Σs × Σ−1/2

We can re-write: Σs = Σ1/2 ×G× L×G× Σ1/2

where G and L come from the eigen-decomposition of Σ1
s

Define orthogonal signal matrix: Σ̃s = G′ × Σ−1/2 × Σs ×
(
Σ−1/2

)′ ×G

(31)

This implies that:

Σ̃s =

1/(α + K̃1) 0

0 1/(α + K̃2)

 (32)

After solving the model, the optimal K̃i rotated back to the original economy may require

Ki that do not satisfy
∑

i K̃i ≤ 1.

A.9 Increasing α

One of the effects of setting α to larger values is that in three of the four scenarios, we see

a kink in the relationship between the cost of becoming informed and the share of agents
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who decide to learn when the ETF is present. To the right of the kink, the cost of becoming

informed is high, so relatively few agents are becoming informed. Given that systematic risk

affects all assets, informed agents initially devote all their attention to learning about this

risk-factor. To the left of the kink, learning about the systematic risk-factor has become

crowded, and informed agents start devoting some attention to the individual-asset risks.

Figure 15 focuses on the case where ρ = 0.25 and σ2
n = 0.2. The top panel shows

two things: (1) The relationship between the cost of becoming informed, and the share of

attention devoted to systematic risk [blue dots]. To the right of the kink, all attention is

being devoted to the systematic risk-factor. (2) U1,j i.e. the time one objective function for

informed [red squares] and uninformed agents [green triangles]. One of the counter-intuitive

features of the kink is that the line is steeper once agents are devoting some attention to the

idiosyncratic assets. For both informed and uninformed agents, the lines become steeper to

the left of the kink.

The second panel shows why the slope changes: To the right of the kink informed and

uninformed investors are making roughly the same profits on stocks, but informed investors

are making significantly larger profits on the ETF. To the left of the kink, informed investors

gain an advantage over uninformed investors on the individual stocks. This increases the

relative benefit of becoming informed, which can explain the changes in slopes around the

kink.

A.10 Trends Sector ETF

[TBA]
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Figure 15: Trading profits by asset type.
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Figure 16: Sector ETF Trends.
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